Hyperfine Interactions

, Volume 125, Issue 1–4, pp 197–204 | Cite as

EFFINO

  • H. Spiering
  • L. Deák
  • L. Bottyán

Abstract

The program EFFINO (Environment For FItting Nuclear Optics) evaluates Mössbauer absorption and time spectra both in nuclear forward scattering and in grazing incidence reflection geometry. Time‐integral prompt and delayed angular scan spectra are also treated. The time spectra are calculated by Fourier transformation from frequency to time domain. The electric quadrupole and magnetic dipole fields at the nuclear sites are considered static at present. The specimen in both forward scattering and grazing incidence is assumed to be a multilayer, with individual thickness and interface roughness (the latter only for the grazing incidence case at present) and electronic index of refraction. Up to eight different layers plus eight repetition periods of those layers are treated. Each layer may contain zero to eight nuclear sites (zero in all layers being prompt X‐ray reflectivity), with their own effective thickness or (for grazing incidence) their own complex nuclear index of refraction. From the forward scattering amplitude, a differential 4 × 4 propagation matrix is constructed for each layer. Several experimental spectra of the same or different type(s) can be fitted simultaneously. Correlations between parameters of the same or of different spectra can be introduced.

nuclear optics correlations energy domain time domain forward scattering grazing incidence inequivalent nuclear site cover layer substrate layer periodic multilayer simultaneous fit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Blume and O.C. Kistner, Phys. Rev. 171 (1968) 417.Google Scholar
  2. [2]
    R.W. Grant, R.M. Housley and U. Gonser, Phys. Rev 171 (1968) 417.Google Scholar
  3. [3]
    H. Spiering and R. Witzgall, Hyp. Interact. 120 (1978) 265.Google Scholar
  4. [4]
    M.A. Andreeva and K. Rosete, Poverkhnost' 9 (1986) 145; Vestnik Mosk. Univ. Ser. 3. Fiz. Astron. 27 (1986) 57.Google Scholar
  5. [5]
    M.A. Andreeva and K. Rosete, Vestnik Mosk. Univ. Ser. 3. Fiz. Astron. 27 (1986) 57.Google Scholar
  6. [6]
    S.M. Irkaev, M.A. Andreeva, V.G. Semenov, G.N. Beloserskii and O.V. Grishin, Nucl. Instrum. Methods B 74 (1993) 545.Google Scholar
  7. [7]
    S.M. Irkaev, M.A. Andreeva, V.G. Semenov, G.N. Beloserskii and O.V. Grishin, Nucl. Instrum. Methods B 74 (1993) 554.Google Scholar
  8. [8]
    M.A. Andreeva, S.M. Irkaev and V.G. Semenov, Sov. Phys.-JETP 78 (1994) 965.Google Scholar
  9. [9]
    A.M. Afanas'ev and Yu. Kagan, Sov. Phys.-JETP 21 (1965) 215.Google Scholar
  10. [10]
    F.I. Fedorov, Teoria Girotropii (Nauka i Technika, Minsk, 1976).Google Scholar
  11. [11]
    G.M. Borzdov, L.M. Barskovskii and V.I. Lavrukovich, Zh. Prikl. Spektrosk. 25 (1976) 526.Google Scholar
  12. [12]
    L. Deák, L. Bottyàn, D.L. Nagy and H. Spiering, Phys. Rev. B 53 (1996) 6158.Google Scholar
  13. [13]
    L. Deák, L. Bottyàn, M. Major, D.L. Nagy, H. Spiering and E. Szilágyi, Some basic aspects of synchrotron Mössbauer reflectrometry, to be published in: Condensed Matter Studies by Nuclear Methods, Proc. 34th Zakopane School of Physics, Zakopane, May 1999.Google Scholar
  14. [14]
    J.P. Hannon and G.T. Trammell, Phys. Rev. 169 (1968) 315.Google Scholar
  15. [15]
    J.P. Hannon and G.T. Trammell, Phys. Rev. 186 (1969) 306.Google Scholar
  16. [16]
    Available from http://www.kfki.hu/~mixhp/doc/proidx.htm or from ftp://iacgu7.chemie.uni-mainz.de/pub/effi.Google Scholar
  17. [17]
    E.W. Müller, MOSFUN, Laboratory report, Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Mainz (1982).Google Scholar
  18. [18]
    K. Kulcsár, D.L. Nagy and L. Pócs, in: Proc. Conf. on Mössbauer Spectrometry, Dresden (1971) p. 594.Google Scholar
  19. [19]
    A. Vef, MOSFUN and several plot programs were extended for X-Window applications, Laboratory report, Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Mainz (1982).Google Scholar
  20. [20]
    J.P. Hannon, N.V. Hung, G.T. Trammell, E. Gerdau, M. Mueller, R. Rüffer and H. Winkler, Phys. Rev. B 32 (1984) 5068.Google Scholar
  21. [21]
    R. Röhlsberger, Grazing incidence optics for nuclear resonant filtering of synchrotron radiation, Ph.D. thesis, University Hamburg (1994).Google Scholar
  22. [22]
    R. Röhlsberger, this issue, section IV-1.3.Google Scholar
  23. [23]
    L. Deák, L. Bottyàn and D.L. Nagy, A common anisotropic optical approach to synchrotron Mössbauer and neutron reflectometry, to be published.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • H. Spiering
  • L. Deák
  • L. Bottyán

There are no affiliations available

Personalised recommendations