Foundations of Physics

, Volume 31, Issue 10, pp 1431–1464 | Cite as

A Modal Interpretation of Quantum Mechanics Based on a Principle of Entropy Minimization

  • R. W. Spekkens
  • J. E. Sipe

Abstract

Within many approaches to the interpretation of quantum mechanics, especially modal interpretations, one singles out a particular decomposition of the state vector in order to fix the properties that are well-defined for the system. We present a novel proposal for this preferred decomposition. Given a distinguished factorization of the Hilbert space, it is the decomposition that minimizes the Ingarden–Urbanik entropy from among all product decompositions with respect to the distinguished factorization. We incorporate this choice of preferred decomposition into a framework for modal interpretations and investigate in detail the extent to which it provides a solution to the measurement problem and the extent to which it ensures that measurements whose outcomes are predictable with probability 1 reveal pre-existing properties of the system under investigation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. Bub, Interpreting the Quantum World (Cambridge University Press, Cambridge, 1997).Google Scholar
  2. 2.
    D. Deutsch,”Quantum theory as a universal physical theory,” Int. J. Theor. Phys. 24, 1 (1985).Google Scholar
  3. 3.
    W. H. Zurek, “Preferred states, predictability, classicality and the environment-induced decoherence,” Prog. Theor. Phys. 89, 281 (1993).Google Scholar
  4. 4.
    A. Kent and J. McElwaine, “Quantum prediction algorithms,” Phys. Rev. A 55, 1703 (1997).Google Scholar
  5. 5.
    D. Dieks and P. Vermaas, eds., The Modal Interpretation of Quantum Mechanics (Kluwer Academic, Boston, 1998).Google Scholar
  6. 6.
    R. Healey and G. Hellman, eds., Quantum Measurement: Beyond Paradox (University of Minnesota Press, Minneapolis, 1997).Google Scholar
  7. 7.
    R. W. Spekkens and J. E. Sipe, “Non-orthogonal preferred projectors for modal interpretations of quantum mechanics,” Found. Phys. 31(10) (2001).Google Scholar
  8. 8.
    J. Bub and R. Clifton, “A Uniqueness theorem for ‘no collapse’ interpretations of quantum mechanics,” Stud. Hist. Phil. Mod. Phys. 27, 181 (1996).Google Scholar
  9. 9.
    D. Bohm and B. J. Hiley, The Undivided Universe: An Ontological Interpretation of Quantum Theory (Routledge, London, 1993).Google Scholar
  10. 10.
    J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1993), Chap. 19.Google Scholar
  11. 11.
    S. Kochen, “A new interpretation of quantum mechanics,” in Symposium on the Foundations of Modern Physics, P. Lahti and P. Mittelstaedt, eds. (World Scientific, Singapore, 1985), p. 151.Google Scholar
  12. 12.
    D. Dieks, “The formalism of quantum theory: An objective description of reality?” Ann. Phys. 7, 174 (1988).Google Scholar
  13. 13.
    R. Healey, The Philosophy of Quantum Mechanics (Cambridge University Press, Cambridge, 1989).Google Scholar
  14. 14.
    A. Elby and J. Bub, “The triorthogonal uniqueness theorem and its relevance to the interpretation of quantum mechanics,” Phys. Rev. A 49, 4213 (1994).Google Scholar
  15. 15.
    R. Clifton, “The triorthogonal uniqueness theorem and its irrelevance to the modal interpretation of quantum mechanics,” in Symposium on the Foundations of Modern Physics 1994—70 Years of Matter Waves, K. V. Laurikainen et al., eds. (Editions Frontières, Paris, 1995), p. 45.Google Scholar
  16. 16.
    P. Vermaas and D. Dieks, “The modal interpretation of quantum mechanics and its generalization to density operators,” Found. Phys. 25, 145 (1995).Google Scholar
  17. 17.
    G. Bacciagaluppi and M. Dickson, “Dynamics for modal interpretations,” Found. Phys. 29, 1165 (1999).Google Scholar
  18. 18.
    D. Dieks, “Preferred factorizations and consistent property attribution,” in Healey and Hellman,(6) p. 144.Google Scholar
  19. 19.
    P. E. Vermaas, “A no-go theorem for joint property ascriptions in modal interpretations of quantum mechanics,” Phys. Rev. Lett. 78, 2033 (1997).Google Scholar
  20. 20.
    G. Bacciagaluppi, M. J. Donald, and P. E. Vermaas, “Continuity and discontinuity of definite properties in the modal interpretation,” Helv. Phys. Acta 68, 679 (1995).Google Scholar
  21. 21.
    G. Bacciagaluppi and M. Hemmo, “Modal interpretations, decoherence and measurements,” Stud. Hist. Phil. Mod. Phys. 27B, 239 (1996).Google Scholar
  22. 22.
    P. Vermaas, “The pros and cons of the Kochen–Dieks and the atomic modal interpretation,” in Dieks and Vermaas,(5) p. 103.Google Scholar
  23. 23.
    G. Bacciagaluppi and M. Hemmo, “State preparation in the modal interpretation,” in Healey and Hellman,(6) p. 95.Google Scholar
  24. 24.
    G. Bacciagaluppi, “Kochen–Specker tfheorem in the modal interpretation of quantum mechanics,” Int. J. Theor. Phys. 34, 1205 (1995).Google Scholar
  25. 25.
    R. S. Ingarden and K. Urbanik, “Quantum informational thermodynamics,” Acta Phys. Pol. 21, 281 (1962).Google Scholar
  26. 26.
    A. Peres, “Higher-order Schmidt decompositions,” Phys. Lett A 202, 16 (1995).Google Scholar
  27. 27.
    J. Vink, “Quantum mechanics in terms of discrete beables,” Phys. Rev. A 48, 1808 (1993).Google Scholar
  28. 28.
    D. Z. Albert, Quantum Mechanics and Experience (Harvard University Press, Cambridge, 1992).Google Scholar
  29. 29.
    A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, 1995).Google Scholar
  30. 30.
    R. Omnès, The Interpretation of Quantum Mechanics (Princeton University Press, Princeton, 1994), pp. 306–309.Google Scholar
  31. 31.
    L. P. Hughston, R. Jozsa, and W. K. Wootters, “A complete classification of quantum ensembles having a given density matrix,” Phys. Lett. A 183, 14 (1993).Google Scholar
  32. 32.
    R. Bhatia, Matrix Analysis (Springer, New York, 1997).Google Scholar
  33. 33.
    M. A. Nielsen, “Conditions for a class of entanglement transformations,” Phys. Rev. Lett. 83, 436 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • R. W. Spekkens
    • 1
  • J. E. Sipe
    • 1
  1. 1.Department of PhysicsUniversity of TorontoTorontoCanada

Personalised recommendations