Hyperfine Interactions

, Volume 108, Issue 1–3, pp 227–238 | Cite as

Accurate mass spectrometry of trapped ions

  • M. Bradley
  • F. Palmer
  • D. Garrison
  • L. Ilich
  • S. Rusinkiewicz
  • D.E. Pritchard


The Penning trap Ion Cyclotron Resonance (ICR) method we use to weigh atomic masses is reviewed, and our plans for future measurements, new methods, and apparatus improvements are discussed. Our ultimate goal is to develop a new technique for measuring atomic masses with an accuracy of a few parts in 1012. We will do this by comparing the cyclotron frequencies of two simultaneously trapped ions. In order to successfully implement this new method we are developing a quieter, more sensitive DC SQUID-based detector and a new more harmonic trap, and we plan to use our classical squeezing techniques to reduce the effects of thermal noise.

With our improved apparatus we will weigh Cs and Rb to help determine the fine structure constant α, weigh 29Si and 30Si as part of the current effort to replace the artifact kilogram standard with a Si crystal containing a known number of atoms, and measure the 3H-3He mass difference to help set a limit on the mass of the electron neutrino. Our higher accuracy will also enable us to ``weigh'' the neutron capture gamma rays of 28Si, 32S, and 48Ti to help determine the molar Planck constant NAh and the fine structure constant α. Finally, with a mass measurement accuracy \sim 10-12 we will be able to ``weigh'' chemical bonds.


Atomic Mass Cyclotron Frequency Atomic Mass Unit Mass Measurement Accuracy Cyclotron Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. DiFilippo, V. Natarajan, K. Boyce and D. E. Pritchard, Phys. Rev. Lett. 73 (1994) 1481.CrossRefADSGoogle Scholar
  2. [2]
    T. Kinoshita, IEEE Trans. Inst. Meas. 44 (1995) 498.CrossRefGoogle Scholar
  3. [3]
    R.S. Van Dyck, Jr., P.B. Schwinberg and H.G. Dehmelt, Phys. Rev. Lett. 59 (1987) 26.CrossRefADSGoogle Scholar
  4. [4]
    E. Kruger, W. Nistler and W. Weirauch, IEEE Trans. Inst. Meas. 44 (1995) 514.CrossRefGoogle Scholar
  5. [5]
    M.E. Cage et al., IEEE Trans. Inst. Meas. 38 (1989) 284.CrossRefGoogle Scholar
  6. [6]
    M. Weitz et al., Phys. Rev. A 52 (1995) 2664.CrossRefADSGoogle Scholar
  7. [7]
    F. Nez et al., IEEE Trans. Inst. Meas. 44 (1995) 568.CrossRefGoogle Scholar
  8. [8]
    D. Weiss, B. Young and S. Chu, Phys. Rev. Lett. 70 (1993) 2706.CrossRefADSGoogle Scholar
  9. [9]
    B.C. Young, M. Weitz, J.M. Hensley and S. Chu, in: Proc. Fifth Symp. on Frequency Standards and Metrology, Woods Hole, Massachusetts, October 1995 (World Scienti?c, 1996) p. 223.Google Scholar
  10. [10]
    D.L. Farnham, R.S. Van Dyck, Jr. and P.B. Schwinberg, Phys. Rev. Lett. 75 (1995) 3598.CrossRefADSGoogle Scholar
  11. [11]
    B.N. Taylor, IEEE Trans. Inst. Meas. 40 (1991) 86.CrossRefGoogle Scholar
  12. [12]
    E. Otten, Nucl. Phys. Suppl. B 38 (1995) 26.CrossRefADSGoogle Scholar
  13. [13]
    E. Kessler, private communication.Google Scholar
  14. [14]
    S.G. Lias et al., J. Phys. Chem. Ref. Data 17 (1988) Suppl. 1.Google Scholar
  15. [15]
    R.S. Van Dyck Jr., D.J. Wineland, P.A. Ekstrom and H.G. Dehmelt, Appl. Phys. Lett. 28 (1976) 446.CrossRefADSGoogle Scholar
  16. [16]
    G. Gabrielse, Phys. Rev. A 27 (1983) 2277.CrossRefADSGoogle Scholar
  17. [17]
    R. Weisskoff, G. Lafyatis, K. Boyce, E. Cornell, R. Flanagan Jr. and D. E. Pritchard, J. Appl. Phys. 63 (1988) 4599.CrossRefADSGoogle Scholar
  18. [18]
    D.J. Wineland and H.G. Dehmelt, J. Appl. Phys. 46 (1975) 919.CrossRefADSGoogle Scholar
  19. [19]
    E.A. Cornell, R.M. Weisskoff, K. Boyce and D.E. Pritchard, Phys. Rev. A 41 (1990) 312.CrossRefADSGoogle Scholar
  20. [20]
    E.A. Cornell, R.M. Weisskoff, K.R. Boyce, R.W. Flanagan Jr., G.P. Lafyatis and D.E. Pritchard, Phys. Rev. Lett. 63 (1989) 1674.CrossRefADSGoogle Scholar
  21. [21]
    P.J. Huber, Robust Statistics(Wiley, New York, 1981).Google Scholar
  22. [22]
    N. Ramsey, Molecular Beams(Clarendon Press, Oxford, 1956).Google Scholar
  23. [23]
    V. Natarajan, K. Boyce, F. DiFilippo and D.E. Pritchard, Phys. Rev. Lett. 71 (1993) 1998.CrossRefADSGoogle Scholar
  24. [24]
    A.H. Wapstra and G. Audi, Nucl. Phys. A 432 (1985).Google Scholar
  25. [25]
    A.H. Wapstra, Nucl. Instr. Meth. A 292 (1990) 671.CrossRefADSGoogle Scholar
  26. [26]
    G.L. Greene, E.G. Kessler Jr., R.D. Deslattes and H. Borner, Phys. Rev. Lett. 56 (1986) 819.CrossRefADSGoogle Scholar
  27. [27]
    G. Audi and A.G. Wapstra, Nucl. Phys. A 565 (1993).Google Scholar
  28. [28]
    R.S. Van Dyck Jr., D.L. Farnham and P.B. Schwinberg, in: Proc. 6th Int. Conf. on Nuclei Far From Stability and 9th Int’l Conf. on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, July 1992 (IOP Publishing, Bristol, 1993) p. 3.Google Scholar
  29. [29]
    R.S. Van Dyck Jr., D.L. Farnham and P.B. Schwinberg, Phys. Rev. Lett. 70 (1993) 2888.CrossRefADSGoogle Scholar
  30. [30]
    R. Jertz et al., Phys. Scr. 48 (1993) 399.ADSGoogle Scholar
  31. [31]
    R.S. Van Dyck Jr., F.L. Moore, D.L. Farnham and P.B. Schwinberg, Phys. Rev. A 40 (1989) 6308.CrossRefADSGoogle Scholar
  32. [32]
    R.S. Van Dyck Jr. et al., Phys. Scr. T 59 (1995).Google Scholar
  33. [33]
    G. Gabrielse and J. Tan, J. Appl. Phys. 63 (1988) 5143.CrossRefADSGoogle Scholar
  34. [34]
    E.A. Cornell, K. Boyce, D.L.K. Fygenson and D.E. Pritchard, Phys. Rev. A 45 (1992) 3049.CrossRefADSGoogle Scholar
  35. [35]
    S. Rusinkiewicz, Senior Thesis, Massachusetts Institute of Technology (1995).Google Scholar
  36. [36]
    V. Natarajan, F. DiFilippo and D. E. Pritchard, Phys. Rev. Lett. 74 (1995) 2855.CrossRefADSGoogle Scholar
  37. [37]
    F. DiFilippo, V. Natarajan, K. Boyce and D.E. Pritchard, Phys. Rev. Lett. 68 (1992) 2859.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • M. Bradley
    • 1
  • F. Palmer
    • 1
  • D. Garrison
    • 1
  • L. Ilich
    • 1
  • S. Rusinkiewicz
    • 1
  • D.E. Pritchard
    • 1
  1. 1.Research Laboratory of Electronics, Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations