Journal of Nanoparticle Research

, Volume 3, Issue 5–6, pp 453–465 | Cite as

Describing Hydrodynamic Particle Removal from Surfaces Using the Particle Reynolds Number

Article

Abstract

The fundamental processes related to the removal of fine particles from surfaces in a hydrodynamic flow field are not adequately understood. A critical particle Reynolds number approach is proposed to assess these mechanisms for fine particles when surface roughness is small compared to particle diameter. At and above the critical particle Reynolds number, particle removal occurs, while below the critical value, particles remain attached to a surface. The system under consideration consists of glass particles adhering to a glass surface in laminar channel flow. Our results indicate rolling is the removal mechanism, which is in agreement with the literature. Theoretical results of the critical particle Reynolds number model for rolling removal are in general agreement with experimental data when particle size distribution, particle and surface roughness, and system Hamaker constant are taken into account.

particle adhesion hydrodynamic detachment chemical–mechanical planarization (CMP) post-CMP cleaning particle Reynolds number van der Waals forces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali I., R. Sudipto & G. Shinn, 1994. Chemical-mechanical polishing of interlayer dielectric: A review. Solid State Technol. 37, 63.Google Scholar
  2. Amick J.A., 1976. Cleanliness and the cleaning of silicon wafers. Solid State Technol. 19, 47.Google Scholar
  3. Busnaina A., J. Taylor & I. Kashkoush, 1993. Measurement of the adhesion and removal forces of submicrometer particles on silicon substrates. J. Adhes. Sci. Tehcnol. 7, 441.Google Scholar
  4. Cooper K., 2000. A Fundamental and Experimental Study into the Adhesion of Micron-Scale Particles to Thin Films. Ph.D. Thesis, Arizona State University.Google Scholar
  5. Cooper K., N. Ohler, A. Gupta & S. Beaudoin, 2000a. Analysis of contact interactions between a rough deformable colloid and a smooth substrate. J. Colloid Interface Sci. 222, 63.PubMedGoogle Scholar
  6. Cooper K., A. Gupta & S. Beaudoin, 2000b. Substrate morphology and particle adhesion in reacting systems. J. Colloid Interface Sci. 228, 213.PubMedGoogle Scholar
  7. de Larios J.M., J. Zhang, E. Zhao, T. Gockel & M. Ravkin, 1997. Evaluating chemical mechanical cleaning technology for post-CMP applications. Micro. 15, 61.Google Scholar
  8. Fuller K.N.G. & D. Tabor, 1975. The effect of surface roughness on the adhesion of elastic solids. Proc. R. Soc. Lond. A. 345, 327.Google Scholar
  9. Heroux J.B., S. Boughaba & I. Ressejac, 1996. CO2 Laser-assisted removal of submicron particles from solid surfaces. J. Appl. Phys. 79, 2857.Google Scholar
  10. Hubbe M., 1984. Theory of detachment of colloidal particles from flat surfaces exposed to flow. Colloid Surf. 12, 151.Google Scholar
  11. Hymes D., H. Li, E. Zhao & J. de Larios, 1998. The challenges of the copper CMP clean. Semicond. Int. 21, 117.Google Scholar
  12. Johnson K.L. & J.A. Greenwood, 1997. An adhesion map for the contact of elastic spheres. J. Colloid Interface Sci. 192, 326.PubMedGoogle Scholar
  13. Kern W., 1990. The evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 137, 1887.Google Scholar
  14. Khilnani A., 1988. Cleaning semiconductor surfaces: Facts and foibles. In: Mittal K. (ed.), Particles on Surfaces I: Detection, Adhesion, and Removal. Plenum Press, p. 17.Google Scholar
  15. Krishnan S., A.A. Busnaina, D.S. Rimai & L.P. DeMejo, 1994. The adhesion-induced deformation and the removal of submicrometer particles. J. Adhes. Sci. Technol. 8, 1357.Google Scholar
  16. Liu C., B. Dai & C. Yeh, 1996. Post cleaning of chemical mechanical polishing process. Appl. Surf. Sci. 92, 176.Google Scholar
  17. Maugis D., 1992. Adhesion of spheres: The JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243.Google Scholar
  18. Maugis D. & H.M. Pollock, 1984. Surface forces, deformation, and adherence at metal microcontacts. Acta Metall. 32, 1323.Google Scholar
  19. Murkami M., 1997. Post-CMP cleaning: Removing 0.2 µm particles. Semicond. Int. 20, 56.Google Scholar
  20. O'Neill M., 1968. A sphere in contact with a plane wall in a slow linear shear flow. Chem. Eng. Sci. 23, 1293.CrossRefGoogle Scholar
  21. Rimai D.S., L.P. De Mejo & R.P. Bowen, 1990. Surface-forceinduced deformations of monodisperse polystyrene spheres on planar silicon substrates. J. Appl. Phys. 68, 6234.Google Scholar
  22. Rimai D.S., L.P. DeMejo, W. Vreeland, S.R. Gaboury & M.W. Urban, 1992. The effect of Young's modulus on the surface-force-induced contact radius of spherical glass particles on polyurethane substrates. J. Appl. Phys. 71, 2253.Google Scholar
  23. Rimai D.S., R.S. Moore, R.C. Bowen, V.K. Smith & P.E. Woodgate, 1993. Determination of the dependence of the surface force induced contact radius on particle radius: Cross-linked polystyrene spheres on SiO2/Silicon. J. Mater. Res. 8, 662.Google Scholar
  24. Roy S.R., I. Ali, G. Shinn, N. Furusawa, R. Shah, S. Peterman, K. Witt & S. Eastman, 1995. Postchemical-mechanical planarization cleanup process for interlayer dielectric films. J. Electrochem. Soc. 142, 216.Google Scholar
  25. Soltani M. & G. Ahmadi, 1994. On particle adhesion and removal mechanisms in turbulent flows. J. Adhes. Sci. Technol. 8, 763.Google Scholar
  26. Tabor D., 1977. Surface forces and surface interactions. J. Colloid Interface Sci. 58, 2.Google Scholar
  27. Visser J., 1972. On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van derWaals constants. Adv. Colloid and Interface Sci. 3, 331.Google Scholar
  28. Visser J., 1976. Adhesion of colloidal particles. In: Matijevic E. (ed), Surface and Colloid Science. John Wiley & Sons, Inc., p. 3.Google Scholar
  29. Visser J., 1995. Particle adhesion and removal – A review. Part. Sci. Technol. 13, 169.Google Scholar
  30. Weiss N.A., 1999. Elementary Statistics, 4th ed., AddisonWesley Longman, Inc.Google Scholar
  31. White F.M., 1974. Viscous Fluid Flow, McGraw-Hill, Inc.Google Scholar
  32. Yiantsios S.G. & A.J. Karabelas, 1995. Detachment of spherical microparticles adhering on flat surfaces by hydrodynamic forces. J. Colloid Interface Sci. 176, 74.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringArizona State UniversityTempeUSA

Personalised recommendations