Bulletin of Experimental Biology and Medicine

, Volume 132, Issue 1, pp 675–677

Role of Cystatin C and Cysteine Proteinases in the Development of Mouse LS-Lymphosarcoma

  • O. N. Poteryaeva
  • O. V. Falameeva
  • S. Ya. Zhanaeva
  • I. G. Svechnikova
  • T. A. Korolenko
  • V. I. Kaledin
Article

Abstract

The growth of LS-lymphosarcoma in CBA mice was accompanied by a decrease in the content of the major extracellular inhibitor cystatin C in the tumor, plasma and, to a lesser extent, in tissued not involved in tumor process (liver and spleen). Cyclophosphamide in a dose of 50 mg/kg prolonged the life-span of animals and decreased tumor size by 80%. Cathepsin B and L activities in the tumor tissue increased by 3 and 7 times, respectively. Cystatin C content in the tumor tissue, spleen, and plasma also increased. Cystatin C assay in tumor tissue and plasma helps to predict the rate of tumor growth and to evaluate the efficiency of antitumor therapy.

cystatin C cysteine proteinases LS-lymphosarcoma cyclophosphamide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. I. Kaledin, V. P. Nikolin, T. A. Ageeva, et al., Vopr. Onkol., 46, 588-593 (2000).PubMedGoogle Scholar
  2. 2.
    M. Abrahamson, Mol. Biol., 19, 127-136 (1990).Google Scholar
  3. 3.
    A. J. Barrett and H. Kirschke, Methods Enzymol., 80, 535-561 (1981).PubMedGoogle Scholar
  4. 4.
    K. Bjornland, L. Buo, I. Kjonniksen, et al., Anticancer Res., 16, No. 4, 1627-1631 (1996).PubMedGoogle Scholar
  5. 5.
    C. C. Calkins and B. F. Sloane, Biol. Chem. Hoppe Seyler, 356, No. 2, 71-80 (1995).Google Scholar
  6. 6.
    H. H. Heidtmann, U. Salge, M. Abrahamson, et al., Clin. Exp. Metastasis, 15, No 4, 368-381 (1997).PubMedGoogle Scholar
  7. 7.
    K. Hirai, M. Yokoyama, G. Asano, and S. Tanaka, Hum. Pathol., 30, No. 6, 680-686 (1999).PubMedGoogle Scholar
  8. 8.
    A. Khan, M. Krishna, S. P. Baker, et al., Arch. Pathol. Lab. Med., 122, No. 2, 172-177 (1998).PubMedGoogle Scholar
  9. 9.
    J. Kos, M. Krasovec, N. Cimerman, et al., Clin. Cancer Res., 6, 505-511 (2000).PubMedGoogle Scholar
  10. 10.
    J. Kos, B. Werle, T. Lah, and N. Brunner, Int. J. Biol. Markers, 15, No. 1, 84-89 (2000).PubMedGoogle Scholar
  11. 11.
    T. T. Lah, G. Calaf, E. Kalman, et al., Breast Cancer Res. Treat., 39, 221-233 (1996).PubMedGoogle Scholar
  12. 12.
    T. T. Lah and J. Kos, Biol. Chem., 379, No. 2, 125-130 (1998).PubMedGoogle Scholar
  13. 13.
    T. T. Lah, M. Cercek, A. Blejec, et al., Clin. Can. Res., 6, No. 1, 578-584 (2000).Google Scholar
  14. 14.
    O. N. Poteryaeva, O. V. Falameyeva, T. A. Korolenko, et al., Drugs Exp. Clin. Res., 26, Nos. 5-6, 137-142 (2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • O. N. Poteryaeva
    • 1
    • 2
    • 3
  • O. V. Falameeva
    • 1
    • 2
    • 3
  • S. Ya. Zhanaeva
    • 1
    • 2
    • 3
  • I. G. Svechnikova
    • 1
    • 2
    • 3
  • T. A. Korolenko
    • 1
    • 2
    • 3
  • V. I. Kaledin
    • 1
    • 2
    • 3
  1. 1.Institute of PhysiologySiberian Division of the Russian Academy of Medical SciencesRussia
  2. 2.Institute of BiochemistrySiberian Division of the Russian Academy of Medical SciencesRussia
  3. 3.Institute of Cytology and GeneticsSiberian Division of the Russian Academy of SciencesRussia

Personalised recommendations