Journal of Protein Chemistry

, Volume 20, Issue 6, pp 431–453

Application of the S-Pyridylethylation Reaction to the Elucidation of the Structures and Functions of Proteins

Article

Abstract

Cysteine (Cys) and cystine residues in proteins are unstable under conditions used for acid hydrolysis of peptide bonds. To overcome this problem, we proposed the use of the S-pyridylethylation reaction to stabilize Cys residues as pyridylethyl-cysteine (PEC) protein derivatives. This suggestion was based on our observation that two synthetic derivatives formed by pyridylethylation of the SH group of Cys with either 2-vinylpyridine (2-VP) or 4-vinylpyridine (4-VP), designated as S-β-(2-pyridylethyl)-L-cysteine (2-PEC) and S-β-(4-pyridylethyl)-L-cysteine (4-PEC), were stable under acid conditions used to hydrolyze proteins. This was also the case for protein-bound PEC groups. Since their discovery over 30 years ago, pyridylethylation reactions have been widely modified and automated for the analysis of many structurally different proteins at levels as low as 20 picomoles, to determine the primary structures of proteins and to define the influence of SH groups and disulfide bonds on the structures and functional, enzymatic, medical, nutritional, pharmacological, and toxic properties of proteins isolated from plant, microbial, marine, animal, and human sources. Pyridylethylation has been accepted as the best method for the modification of Cys residues in proteins for subsequent analysis and sequence determination. The reaction has also been proposed to measure D-Cys, homocysteine, glutathione, tryptophan, dehydroalanine, and furanthiol food flavors. This integrated overview of the diverse literature on these reactions emphasizes general concepts. It is intended to serve as a resource and guide for further progress based on the reported application of pyridylethylation reactions to more than 150 proteins.

Cysteine cystine disulfide bonds sulfhydryl groups pyridylethylation vinyl pyridine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Aitken, A. (1994). Meth.Mol.Biol. 32, 351-360.Google Scholar
  2. Alcami, A., Angulo, A., Lopez-Otin, C., Munoz, M., Freije, J. M., Carascosa, A. L., and Vinuela, E. (1992). J.Virol. 66, 3860-3865.Google Scholar
  3. Ammer, H. and Henschen, A. (1987). Biol.Chem.Hoppe Seyler 368, 1619-1626.Google Scholar
  4. Amons, R. (1987). FEBS Lett. 212, 68-72.Google Scholar
  5. Andrews, P. C. and Dixon, J. E. (1981). J.Biol.Chem. 256, 8267-8270.Google Scholar
  6. Andrews, P. C. and Dixon, J. E. (1987). Anal.Biochem. 161, 524-528.Google Scholar
  7. Atoda, H., Hyuga, M., and Morita, T. (1991). J.Biol.Chem. 266, 14903-14911.Google Scholar
  8. Bartone, N. A., Bentley, J. D., and Maclaren, J. A. (1991). J.Protein Chem. 10, 603-607.Google Scholar
  9. Bean, S. R., Bietz, J. A., and Lookhart, G. L. (1998). J.Chromatogr. 814, 25-41.Google Scholar
  10. Bech, L. M., Tabatabai, L. B., and Mayfield, J. E. (1990). Biochemistry 29, 372-376.Google Scholar
  11. Bech, L. M., Sorensen, S. B., and Breddam, K. (1993). Biochemistry 32, 2845-2852.Google Scholar
  12. Becker, A., Theuring, F., Gottwald, M., Kauser, K., Schleuning, W. W., and Donner, P. (1994). Protein Express.Purif. 5, 50-56.Google Scholar
  13. Beiswanger, C. M., Mandella, R. D., Graessle, T. R., Reuhl, K. R., and Lowndes, H. E. (1993). Toxicol.Appl.Pharmacol. 118, 233-244.Google Scholar
  14. Bentz, H., Chang, R. J., Thompson, A. Y., Glaser, C. B., and Rosen, D. M. (1990). J.Biol.Chem. 265, 5024-5029.Google Scholar
  15. Bergendorf, O. and Wallengren, J. (1999). Contact Dermatitis 40, 280-281.Google Scholar
  16. Bertagnolli, B. L. and Wedding, R. T. (1977). J.Nutr. 107, 2122-2127.Google Scholar
  17. Bietz, J. and Wall, J. S. (1973). Cereal Chem. 50, 537-547.Google Scholar
  18. Bietz, J. and Wall, J. S. (1980). Cereal Chem. 57, 415-421.Google Scholar
  19. Bietz, J., Paulis, J. W., and Wall, J. S. (1979). Cereal Chem. 56, 327-352.Google Scholar
  20. Brennan, S. O., Arai, K., Madison, J., Laurell, C. B., Galliano, M., Watkins, S., Peach, R., Myles, T., George, P., and Putnam, F. W. (1990). Proc.Natl.Acad.Sci.USA 80, 3909-3913.Google Scholar
  21. Broaders, M., Faro, C., and Ryan M. F. (1999). J.Nat.Toxins 8, 155-166.Google Scholar
  22. Brunnemann, K. D., Rivenson, A., Chen, S. C., Saa, V., and Hoffmann, D. (1992). Cancer Lett. 65, 107-113.Google Scholar
  23. Bucciarelli, T., Sacchetta, P., Penelli, A., Cornelio, L., Romanlli, R., Melino, S., Petrucelli, R., and Ilio, C. D. (1999). Biochim.Biophys.Acta 1431, 189-198.Google Scholar
  24. Bures, E. J., Hui, J. O., Young, Y., Chow, D. T., Katta, V., Rohde, M. F., Zeni, L., Rosenfeld, R. D., Stark, K. L., and Haniu, M. (1998). Biochemistry 37, 12172-12177.Google Scholar
  25. Burgess, S. R., Shewry, P. R., Matlashewski, G. J., Altosaar, I., and Miflin, B. J. (1983). J.Exp.Bot. 34, 1320-1332.Google Scholar
  26. Burgisser, D. M., Thony, B., Redweik, U., Hunziker, P., Heizmann, C. W., and Blau, N. (1994). Eur.J.Biochem. 219, 497-502.Google Scholar
  27. Burnouf, T. and Bietz, J. A. (1984). J.Chromatogr. 299, 185-199.Google Scholar
  28. Burnouf, T. and Bietz, J. A. (1985). Theor.Appl.Genet. 70, 610-619.Google Scholar
  29. Burnouf, T. and Bietz, J. A. (1989). Cereal Chem. 66, 121-127.Google Scholar
  30. Calvert, J. J., Schaefer, W., Soszka, T., Lu, W., Cook, J., Bradford, J., and Niewiarowski, S. (1991). Biochemistry 30, 5225-5229.Google Scholar
  31. Came, A. F. and Sally, U. (1997). Methods Mol.Biol. 64, 271-284.Google Scholar
  32. Caruso, C., Rutiogliano, B., Riccio, A., Kunzmann, A., and di Prisco, G. (1992). Comp.Biochem.Physiol.[B] 102, 941-946.Google Scholar
  33. Caruso, C., Caporale, C., Chilosi, G., Vacca, F., Bertini, L., Magro, P., Poerio, E., and Buoncore, V. (1996). J.Protein Chem. 15, 35-44.Google Scholar
  34. Castellanos-Serra, L., Proenza, W., Huerta, V., Moritz, R. L., and Simpson, R. J. (1999). Electrophoresis 20, 732-737.Google Scholar
  35. Chang, J. Y. and Ballatore, A. (2000). J.Protein Chem. 19, 299-310.Google Scholar
  36. Cavins, J. F. and Friedman, M. (1968a). J.Biol.Chem. 43, 3357-3360.Google Scholar
  37. Cavins, J. F. and Friedman, M. (1968b). Biochemistry 6, 3766-3780.Google Scholar
  38. Cavins, J. F. and Friedman, M. (1968c). Cereal Chem. 45, 172-176.Google Scholar
  39. Cavins, J. F. and Friedman, M. (1970). Anal Biochem. 35, 489-493.Google Scholar
  40. Chauffe, L. and Friedman, M. (1977). Adv.Exp.Med.Biol. 86A, 415-424.Google Scholar
  41. Chopin, V., Stefano, G. B., and Salzet, M. (1998). Eur.J.Biochem. 258, 662-668.Google Scholar
  42. Chu, C. C., Chu, S. T., Chen, S. W., and Chen, Y. H. (1994). Biochem.J. 303, 171-176.Google Scholar
  43. Cockle, S. A., Epand, R. M., Stollery, J. G., and Moscarello, M. A. (1980). J.Biol.Chem. 255, 9182-9188.Google Scholar
  44. Cole, A. R., Hall, N. E., Treutlein, H. R., Eddes, J. S., Reid, G. E., Moritz, R. L., and Simpson, R. J. (1999). J.Biol.Chem. 274, 7207-7215.Google Scholar
  45. Coles, B., Yang, M., Lang, N. P., and Kadlubar, F. F. (2000). Cancer Lett. 156, 167-175.Google Scholar
  46. Colilla, F. J., Rocher, A., and Mendez, E. (1990). FEBS Lett. 270, 191-194.Google Scholar
  47. Dardel, F., Packman, L. C., and Perham, R. N. (1990). FEBS Lett. 264, 206-210.Google Scholar
  48. Debarbieux, L. and Beckwith, J. (1999). Cell 99, 117-119.Google Scholar
  49. Delbanco, E. H., Bolt, H. M., Huber, W. W., Beken, S., Geller, F., Philippou, S., Brands, F. H., Bruning, T., and Thier, R. (2000). Arch.Toxicol. 74, 688-694.Google Scholar
  50. Dixon, D. P., Cole, D. J., and Edwards, R. (1998). Plant Mol.Biol. 36, 75-87.Google Scholar
  51. Egorov, T. A., Kazakov, V. K., Musoliamov, A. K., Pustobaev, V. N., and Kovaleva, G. K. (1993). Biorg.Khim. 19, 1158-1168. (in Russian).Google Scholar
  52. Egorov, T. A., Odintsova, T. I., and Musolyamov, A. K. (1999). Biochemistry (Moscow) 64, 294-297. (English trans).Google Scholar
  53. Engeseth, H., Hermondson, M. A. and McMillin, D. R. (1984). FEBS Lett. 171, 257-261.Google Scholar
  54. Engleka, K. A. and Maciag, T. (1992). J.Biol.Chem. 267, 11307-11315.Google Scholar
  55. Enjyoji, K. I. and Kato, H. (1992). J.Biol.Chem. 263, 973-979.Google Scholar
  56. Eskins, K. and Friedman, M. (1970). Photochem.Photobiol. 12, 245-247.Google Scholar
  57. Fainzilber, M., Nakamura, T., Gaathon, A., Lodder, J. C., Kits, K. S., Burlingame, A. L., and Zlotkin, E. (1995). Biochemistry 34, 8649-8656.Google Scholar
  58. Faulks, A. J., Shewry, P. R., and Miflin, B. J. (1981). Biochem.Genet. 19, 841-858.Google Scholar
  59. Faull, K. F., Higginson, J., Waring, A. J., Johnson, J., To, T., Whitelegge, J. P., Stevens, R., Fluharty, C. B., and Fluharty, A. L. (2000). Archiv.Biochem.Biophys. 376, 266-274.Google Scholar
  60. Feil, R., Kellermann, J., and Hofmann, F. (1995). Biochemistry 34, 13152-13158.Google Scholar
  61. Ferrason, E., Quillien, L., and Gueguen, J. (1995). J.Protein Chem. 14, 467-475.Google Scholar
  62. Ferrason, E., Quillien, L., and Gueguen, J. (1997). J.Agric.Food Chem. 45, 127-131.Google Scholar
  63. Fickenscher, K., Scheibe, R., and Marcus, F. (1987). Eur.J.Biochem. 168, 653-658.Google Scholar
  64. Fischer, W. H., Greenwald, J., Park, M., Craig, G., Choe, S., and Vale, W. (1999). J.Biol.Chem. 266, 19480-19483.Google Scholar
  65. Fisch, R. H. and Friedman, M. (1972). J.Chem.Soc.Chem.Commun. 812.Google Scholar
  66. Friedman, M. (1966). Biochem.Biophys.Res.Commun. 23, 626-632.Google Scholar
  67. Friedman, M. (1967). J.Am.Chem.Soc. 89, 4709-4713.Google Scholar
  68. Friedman, M. (1968). Quarterly Repts.Sulfur Chem. 3, 125-144.Google Scholar
  69. Friedman, M. (1971). Proc.Royal Soc.Med. 70, 50-60.Google Scholar
  70. Friedman, M. (1973a). The chemistry and biochemistry of the sulfhydryl group in amino acids, peptides, and proteins.Pergamon Press, Oxford, England, p. 485.Google Scholar
  71. Friedman, M. (1973b). Reactions of cereal proteins with vinyl compounds. In Industrial uses of cereal grains(Y. Pomeranz, ed), Am. Assoc. Cereal Chemists, Minneapolis, Minnesota, pp. 237-251.Google Scholar
  72. Friedman, M. (ed.). (1974). Protein-metal interactions. Plenum Press, New York, p. 692.Google Scholar
  73. Friedman, M. (1977a). Adv.Exp.Med.Biol. 86B, 713-725.Google Scholar
  74. Friedman, M. (1977b). Adv.Exp.Med.Biol. 86A, 1-27.Google Scholar
  75. Friedman, M. (ed.). (1986). Nutritional and toxicological significance of enzyme inhibitors in foods. Plenum, New York, p. 570.Google Scholar
  76. Friedman, M. (1994). J.Agric.Food Chem. 42, 3-20.Google Scholar
  77. Friedman, M. (1996). J.Agric.Food Chem. 43, 6-29.Google Scholar
  78. Friedman, M. (1997). J.Agric.Food Chem. 45, 1523-1540.Google Scholar
  79. Friedman, M. (1999a). J.Agric.Food Chem. 47, 3457-3479.Google Scholar
  80. Friedman, M. (1999b). J.Agric.Food Chem. 47, 1295-1319.Google Scholar
  81. Friedman, M. and Brandon, D. L. (2001). J.Agric.Food Chem. 49, 1069-1086.Google Scholar
  82. Friedman, M. and Cuq, J. L. (1988). J.Agric.Food Chem. 36, 1079-1093.Google Scholar
  83. Friedman, M. and Finot, P. A. (1990). J.Agric.Food Chem. 38, 2011-2020.Google Scholar
  84. Friedman, M. and Krull, L. H. (1969). Biochem.Biophys.Res.Commun. 37, 630-633.Google Scholar
  85. Friedman, M. and Krull, L. H. (1970). Biochem.Biophys.Acta 207, 303-306.Google Scholar
  86. Friedman, M. and Noma, A. T. (1970). Textile.Res.J. 40, 1073-1078.Google Scholar
  87. Friedman, M. and Noma, A. T. (1986). J.Agric.Food Chem. 34, 497-502.Google Scholar
  88. Friedman, M. and Orracah-Tetteh, R. (1977). Adv.Exp.Med.Biol. 86B, 330-360.Google Scholar
  89. Friedman, M. and Romersberger, J. A. (1968). J.Org.Chem. 33, 154-157.Google Scholar
  90. Friedman, M. and Tillin, S. (1974). Textile Res.J. 44, 578-580.Google Scholar
  91. Friedman, M. and Waiss, A. J., Jr. (1972). Env.Sci.Technol. 6, 457-458.Google Scholar
  92. Friedman, M. and Wall, J. S. (1964). J.Am.Chem.Soc.86, 3735-3741.Google Scholar
  93. Friedman, M. and Wall, J. S. (1966). J.Org.Chem. 31, 2888-2894.Google Scholar
  94. Friedman, M. and Williams, L. D. (1974). Bioorg.Chem. 3, 267-280.Google Scholar
  95. Friedman, M., Cavins, J. F., and Wall, J. S. (1965). J.Am.Chem.Soc. 87, 3572-3582.Google Scholar
  96. Friedman, M., Krull, L. H., and Cavins, J. F. (1970). J.Biol.Chem. 45, 3868-3871.Google Scholar
  97. Friedman, M., Krull, L. H., and Eskins, K. (1971). J.Appl.Polym.Sci. 18, 297-306.Google Scholar
  98. Friedman, M., Noma, A. T., and Masri, M. S. (1973a). Anal.Biochem. 51, 280-287.Google Scholar
  99. Friedman, M., Finley, J. W., and Yeh, L. S. (1977). Adv.Exp.Med.Biol. 86B, 213-224.Google Scholar
  100. Friedman, M., Harrison, C. S., Ward, W. H., and Lundgren, H. P. (1973b). J.Appl.Polym.Sci. 17, 377-390.Google Scholar
  101. Friedman, M., Williams, L. D., and Masri, M. S. (1974). Int.J.Peptide Protein Res. 6, 183-185.Google Scholar
  102. Friedman, M., Noma, A. T., and Wagner, J. R. (1979). Anal.Biochem. 98, 293-304.Google Scholar
  103. Friedman, M., Zahnley, J. C., and Wagner, J. R. (1980). Anal.Biochem. 106, 27-34.Google Scholar
  104. Friedman, M., Diamond, M. J., and Broderich, G. L.. (1982). J.Agric.Food Chem. 30, 72-77.Google Scholar
  105. Fu, Y., Ballicora, M. A., Leykam, J. F., and Preiss, J. (1998). J.Biol.Chem. 273, 25045-25052.Google Scholar
  106. Fullmer, C. S. (1984). Anal.Biochem. 142, 336-339.Google Scholar
  107. Fullmer, C. S. and Wasserman, R. H. (1987). Proc.Natl.Acad.Sci.USA 84, 4772-4776.Google Scholar
  108. Gevondyan, N. M., Gevondyan, V. S., and Modyanov, N. N. (1993). Biochem.Mol.Biol.Int. 29, 327-337.Google Scholar
  109. Gold, A. M., Despommier, D. D., and Buck, S. W. (1990). Mol.Biochem.Parasitol. 41, 187-196.Google Scholar
  110. Goldstein, S. W., Bordner, J., Hoth, L. R., and Geghegan, K. F. (2001). Bioconjug.Chem. 12, 406-413.Google Scholar
  111. Gray, W. R. (1993). Protein Sci. 2, 1732-1748.Google Scholar
  112. Griffith, O. W. (1980). Anal.Biochem. 106, 207-212.Google Scholar
  113. Guth, H., Hoffmann, T., Schieberie, P., and Grosch, W. (1995). J.Agric.Food Chem. 43, 2199-2203.Google Scholar
  114. Hamazume, Y., Mega, T., and Ikenaka, T. (1987). J.Biochem. 10, 217-224.Google Scholar
  115. Haniu, M., Hui, J., Young, Y., Le, Y., Katta, V., Lee, R., Shimamoto, G., and Rohde, M. F. (1996). Biochem. 35, 16799-16805.Google Scholar
  116. Hara, T. and Miyata, T. (1991). J.Biochem. 110, 261-266.Google Scholar
  117. Hashimoto, Y., Nagoka, I., and Yamashita, T. (1993). Biochem.Biophys.Acta 1203, 236-242.Google Scholar
  118. Henkel, W. (1996). Biochem.J. 318, 497-503.Google Scholar
  119. Hermondson, M. A., Ericsson, L. H., Titani, K., Neurath, H., and Walsh, K. A. (1972). Biochemistry 11, 4493-4502.Google Scholar
  120. Hermondson, M. A., Ericsson, L. H., Neurath, H., and Walsh, K. A. (1973). Biochemistry 12, 3146-3154.Google Scholar
  121. Heukeshoven, J. (1980). Anal.Biochem. 109, 421-425.Google Scholar
  122. Heukeshoven, J. and Dernick, R. (1985). J.Chromatogr. 326, 91-101.Google Scholar
  123. Hiki, Y., Tanaka, A., Kokubo, T., Iwase, H., Nishikido, J., Hotta, K., and Kobayashi, Y. (1998). J.Am.Soc.Nephrol. 9, 577-582.Google Scholar
  124. Hirose, M., Takahashi, N., and Doi, E. (1988). Anal.Biochem. 168, 193-201.Google Scholar
  125. Hober, S., Forsberg, G., Palm, G., Hartmanis, M., and Nilsson, B. (1992). Biochemistry 31, 1749-1756.Google Scholar
  126. Hober, S., Hansson, A., Uhlen, M., and Nilsson, B. (1994). Biochemistry 33, 6758-6761.Google Scholar
  127. Hober, S., Lundstrom, L., Uhlen, M., and Nilsson, B. (1999). FEBS Lett. 443, 271-276.Google Scholar
  128. Huang, Y., Kantharn, L., and Sanadi, D. R. (1987). J.Biol.Chem. 262, 3007-3010.Google Scholar
  129. Huang, K. P., Huang, F. L., and Chen, H. C. (1999). J.Neurochem. 72, 1294-1306.Google Scholar
  130. Huebner, F. R. and Bietz, J. A. (1985). J.Chromatogr. 32, 333-342.Google Scholar
  131. Huebner, F. R. and Wall, J. S. (1974). Cereal Chem. 51, 228-240.Google Scholar
  132. Huebner, F. R., Donaldson, J. L., and Wall, J. S. (1974). Cereal Chem. 51, 240-249.Google Scholar
  133. Huebner, F. R., Bietz, J. A., and Wall, J. S. (1978). Adv.Exp.Med.Biol. 105, 67-87.Google Scholar
  134. Hui, J. O., Lee, J., Katta, V., Rohde, M. F., and Haniu, M. (1997). In Techniques in protein chemistry(Marshak, D., ed.), Academic Press, San Diego, California, Vol. VIII, pp. 277-287.Google Scholar
  135. Hui, J. O., Woo, G., Chow, D. T., Katta, V., Osslund, T., and Hanlu, M. (1999). J.Protein Chem. 18, 585-593.Google Scholar
  136. Humeny, A. and Thole, H. H. (1993). Biochem.Biophys.Res.Commun. 194, 1248-1255.Google Scholar
  137. Ikeda, T., Lioubin, M. N., and Marquardt, H. (1987). Biochemistry 26, 2406-2410.Google Scholar
  138. Ikemoto, H., Mizuta, K., and Ventura, M. M. (1985). Ann.Acad.Brasil Ciencia 57, 87-93.Google Scholar
  139. Inglis, A. S. (1983). Meth.Enzymol. 91, 26-36.Google Scholar
  140. Ishiguro, M., Suzuki, M., Takio, K., Matsuzawa, T., and Titani, K. (1991a). Biochemistry 30, 6048-6053.Google Scholar
  141. Ishiguro, M., Takio, K., Suzuki, M., Oyama, R., Matsuzawa, T., and Titani, K. (1991b). Biochemistry 30, 10451-10457.Google Scholar
  142. Isobe, K. and Nokihara, K. (1993). FEBS Lett. 320, 101-106.Google Scholar
  143. Jin, Y., Cox, D. A., Knecht, R., Raschdorf, F., and Cerletti, N. (1991). J.Protein Chem. 10, 565-575.Google Scholar
  144. Jones, B. L. and Cooper, D. B. (1980). J.Agric.Food Chem. 28, 904-908.Google Scholar
  145. Jones, B. L. and Poulle, M. (1990). Plant Physiol. 94, 1062-1070.Google Scholar
  146. Kaku, H. and Shibuya, N. (1992). FEBS Lett. 306, 176-180.Google Scholar
  147. Kaku, H., Mori, Y., Goldstein, I. J., and Shibuya, N. (1993). J.Biol.Chem. 268, 13237-13241.Google Scholar
  148. Kao, M. C. C. and Chung, M. C. M. (1993). Anal Biochem. 215, 82-85.Google Scholar
  149. Kataoka, K., Murata, Y., and Satoh, M. (1992). Sapporo Med.J. 60, 501-513.Google Scholar
  150. Katsumi, A., Tuley, E. A., Bodo, I., and Sadler, J. E. (2000). J.Biol.Chem. 275, 25585-25594.Google Scholar
  151. Katz, A., Oldham, K. T., Guice, K. S., and Coran, A. G. (1993). J.Pediatr.Surg. 28, 1301-1306.Google Scholar
  152. Kawamura, Y., Matsumara, Y., Matoba, T., Yonezawa, D., and Kito, M. (1985). Cereal Chem. 64, 279-283.Google Scholar
  153. Keck, B., Köhler, P., and Wieser, H. (1995). Z.Lebensm.Unters.Forsch. 200, 432-439.Google Scholar
  154. King, J. R., Peters, B. P., and Monteiro-Riviere, N. A. (1994). Toxicol.Appl.Pharmacol. 126, 164-173.Google Scholar
  155. Kirkman, M. J., Shewry, P. R., and Miflin, B. J. (1982). J.Sci.Food Agric. 33, 115-127.Google Scholar
  156. Kobayashi, T., Leavis, P. C., and Collins, J. H. (1996). Biochim.Biophys.Acta 1294, 25-30.Google Scholar
  157. Koenig, N. H. and Friedman, M. (1972). Textile Res.J. 42, 319-320.Google Scholar
  158. Kohama, Y., Okabe, M., Tsujikawa, K., Oka, H., Teramoto, T., Kayamori, Y., Itoh, M., and Mimura, T. (1992). Chem.Pharm.Bull. 40, 808-810.Google Scholar
  159. Köhler, P., Belitz, H-D., and Wieser, H. (1993). Z.Lebensm.Unters.Forsch. 196, 239-247.Google Scholar
  160. Köhler, P., Keck-Gassenmeier, B., Wieser, H., and Kasarda, D. D. (1997). Cereal Chem. 74, 154-158.Google Scholar
  161. Kohsaka, T., Takahara, H., Sugawara, K., and Tagami, S. (1993). Biol.Chem.Hoppe Seyler 374, 203-210.Google Scholar
  162. Kornfelt, T., Vinther, A., Okafo, G. N., and Camilleri, P. (1996). J.Chromatogr. 726A, 223-228.Google Scholar
  163. Kranner, I. and Grill, D. (1996). Phytochem.Anal. 7, 24-28.Google Scholar
  164. Kraus, P., Wigand, J., and Ostermaier, R. (1986). Biol.Chem.Hoppe Syler 367, 937-941.Google Scholar
  165. Krieglstein, K., Henschen, A., Weller, U., and Haberman, E. (1990). Eur.J.Biochem. 188, 39-45.Google Scholar
  166. Krieglestein, K. G., DasGupta, B. R., and Henschen, A. H. (1994). J.Protein Chem. 13, 49-57.Google Scholar
  167. Kruft, V., Kapp, U., and Wittmann-Liebold, B. (1991). Anal.Biochem. 193, 306-309.Google Scholar
  168. Krüger, J. E. and Marchylo, B. A. (1990). Cereal Chem. 67, 141-147.Google Scholar
  169. Krull, L. H. and Friedman, M. (1967). Biochem.Biophys.Res.Commun. 29, 373-377.Google Scholar
  170. Krull, L. H., Gibbs, D. E., and Friedman, M. (1971). Anal.Biochem. 40, 80-85.Google Scholar
  171. Kumuzaki, T., Hoshiba, N., Yokosawa, H., and Ishii, S. (1990). J.Biochem. 107, 409-413.Google Scholar
  172. Kuo, M. D., Oda, Y., Huang, J. S., and Huang, S. S. (1990). J.Biol.Chem. 265, 18749-18752.Google Scholar
  173. Kurata, A., Ohi, K., Sato, K., and Tashiro, M. (2000). J.Protein Chem. 19, 693-698.Google Scholar
  174. Lew, E. J. L., Kuzmicky, D. D., and Kasarda, D. D. (1992). Cereal Chem. 69, 508-515.Google Scholar
  175. Li, K. W., Geraerts, W. P. M., Ebberink, R. H. M., and Joosse, J. (1992). Mol.Cellular Endocrincol. 85, 141-150.Google Scholar
  176. Lindorff-Larsen, K. and Winther, J. R. (2000). Anal.Biochem. 286, 308-310.Google Scholar
  177. Liu, C. L. and Bowers, L. D. (1997). J.Mass Spectrom. 32, 33-42.Google Scholar
  178. Liu, S. Y., Yoshizumij, K., Oda, N., Ohno, M., Tokunaga, F., Iwanaga, S., and Kihara, H. (1990). J.Biochem. 107, 400-408.Google Scholar
  179. Lookhart, G. L., Jones, B. L., Cooper, D. B., and Hall, S. B. (1982). J.Biochem.Biophys.Methods 7, 15-23.Google Scholar
  180. Lundell, N. and Schreitmüller, T. (1999). Anal.Biochem. 266, 31-47.Google Scholar
  181. MacCoss, M. J., Fukagawa, N. K., and Matthews, D. E. (1999). Anal.Chem. 71, 4527-4533.Google Scholar
  182. MacLaren, J. A. (1971). Textile.Res.J. 41, 713.Google Scholar
  183. Madan, A., Williams, T. D., and Faiman, M. D. (1994). Mol.Pharmacol. 46, 1217-1225.Google Scholar
  184. Mak, A. S. and Jones, B. L. (1978). Anal.Biochem. 84, 432-440.Google Scholar
  185. Makevich, S. A., Makevich, A. A., Kivach, L. N., Chernikevich, I. P., Zabrodskaia, S. V., and Oparin, D. A. (1993). Bioorganicheskaia Khimia 19, 1158-1168. (In Russian).Google Scholar
  186. Majewski, T., Thim., L., and Markussen, J. (1987). Int.J.Peptide Prot.Res. 30, 379-387.Google Scholar
  187. Marchylo, J. E., Kruger, J. E., and Hatcher, D. W. (1989). J.Cereal Sci. 9, 113-130.Google Scholar
  188. Margiotta, B., Colaprico, G., D'Ovidio, R., and Lafiandra, D. (1993). J.Cereal Sci. 17, 221-236.Google Scholar
  189. Marquardt, H., Lioubin, M. N., and Ikeda, T. (1987). J.Biol.Chem. 262, 12127-12131.Google Scholar
  190. Masci, S., D'Ovidio, R., Lafiandra, D., and Kasarda, D. D. (1998). Plant Physiol. 118, 1147-1158.Google Scholar
  191. Masri, M. S. and Friedman, M. (1974). J.Applied Polym.Sci. 18, 2367-2377.Google Scholar
  192. Masri, M. S. and Friedman, M. (1982). Biochem.Biophys.Res.Commun. 104, 321-325.Google Scholar
  193. Masri, M. S. and Friedman, M. (1985). J.Protein Chem. 7, 49-54.Google Scholar
  194. Masri, M. S., Windle, J. J., and Friedman, M. (1972). Biochem.Biophys.Res.Commun. 47, 1408-1413.Google Scholar
  195. Matthews, D. E. (2000). Curr.Opinion Clin.Nutr.Metab.Care 3, 367-369.Google Scholar
  196. McKay, D. J., Renaux, B. S., and Dixon, G. H. (1986). Eur.J.Biochem. 156, 5-8.Google Scholar
  197. Mendez, E., Moreno, A., Colila, F., Pelaez, F., Limas, G. G., Mendez, R., Soriano, F., Salinas, M., and de Haro, C. (1990). Eur.J.Biochem. 194, 533-539.Google Scholar
  198. Menegatti, E., Tedeschi, G., Ronchi, S., Bortolotti, F., Ascenzi, P., Thomas, R. M., Bolgnesi, M., and Palmieri, S. (1992). FEBS Lett. 301, 10-14.Google Scholar
  199. Metivier, A., Pilet, M. F., Dousset, X., Sorokine, O., Anglade, P., Zagoree, M., Piard, J. C., Marion, D., Cenatiempo, Y., and Fremaux, C. (1998). Microbiology 144, 2837-2844.Google Scholar
  200. Meyer, F., Schmidt, H. J., Plumper, E., Hasilik, A., Meramann, G., Meyer, H. E., Engstrom, A., and Heckmann, K. (1991). Proc.Natl.Acad Sci.USA 88, 3758-3761.Google Scholar
  201. Ming, D., Markley, J. L., and Hellkant, G. (1995). Peptide Res. 8, 113-114; Biotechniques 18, 808-810.Google Scholar
  202. Millard, M. M. and Friedman, M. (1976). Biochem.Biophys.Res.Commun. 70, 445-451.Google Scholar
  203. Miseta, A. and Csutora, P. (2000). Mol.Biol.Evol. 17, 1232-1239.Google Scholar
  204. Miyata, T., Terukina, S., Matsuda, M., Kasamatsu, A., Takeda, Y., Murakami, T., and Iwanaga, S. (1987). J.Biochem. (Tokyo) 102, 93-101.Google Scholar
  205. Morel, M. H. and Bonicel, J. (1996). Electrophoresis 17, 493-496.Google Scholar
  206. Mori, K., Fujii, R., Kida, N., Takahashi, H., Ohkubo, S., Fujino, M., Ohta, M., and Hayashi, K. (1990). J.Biochem. 107, 73-76.Google Scholar
  207. Moritz, R. L., Eddes, J. S., Reid, G. E., and Simpson, R. J. (1996). Electrophoresis 17, 907-917.Google Scholar
  208. Moroney, J. V., Fullmer, C. S., and McCarty, R. E. (1984). J.Biol.Chem. 259, 7281-7285.Google Scholar
  209. Müller, S. and Wieser, H. (1995). J.Cereal Sci. 22, 21-27.Google Scholar
  210. Müller, S., Wieser, H., and Popineau, Y. (1998). J.Cereal Sci. 27, 23-25.Google Scholar
  211. Munger, K., Germann, U. A., Beltramini, M., Niedermann, D., Bitella-Eberle, G., Kagi, J. H. R., and Lerch, K. (1985). J.Biol.Chem. 260, 10032-10038.Google Scholar
  212. Murai, H., Hara, S., Ikenaka, T., Oda, K., and Murao, S. (1985). J.Biochem. 97, 173-180.Google Scholar
  213. Nadler, T., Blackburn, C., Mark, J., Gordon, N., Regnier, F. E., and Vela, G. (1996). J.Chromatogr. 743A, 91-98.Google Scholar
  214. Nokihara, K., Morita, N., Yamaguchi, M., and Watanabe, T. (1992). Analyt.Lett. 25, 513-533.Google Scholar
  215. Nordberg, J., Zhong, L., Holmgren, A., and Arner, E. S. (1998). J.Biol.Chem. 273, 10835-10842.Google Scholar
  216. Oda, N., Nakamura, H., Sakamoto, S., Liu, S. Y., Kihara, H., Chang, C. C., and Ohno, M. (1991a). Toxicon 29, 157-166.Google Scholar
  217. Oda, Y., Kuo, M. D., Huang, S. S., and Huang, J. S. (1991b). J.Biol.Chem. 266, 16791-16795.Google Scholar
  218. Odo, S., Kamino, K., Kanai, S., Maruyama, T., and Harayama, S. (1995). J.Biochem. 117, 965-973.Google Scholar
  219. Oita, S. (2000). Nippon Shokuhin Kagaku Kogaku 47, 424-430.Google Scholar
  220. Okada, K., Negishi, Y., and Nagao, S. (1988). Cereal Chem. 65, 248-252.Google Scholar
  221. Okamoto, O., Suzuki, Y., Kimura, S., and Shinkai, H. (1996). J.Biochem. 119, 106-114.Google Scholar
  222. Ortiz, J. O. and Bubis, J. (2001). Archiv.Biochem.Biophys. 387, 233-242.Google Scholar
  223. Packman, L. C., Green, M., and Perham, R. N. (1991). Biochem.J. 277, 153-158.Google Scholar
  224. Pas, H. H. and Robillard, G. T. (1988). Biochemistry 27, 5515-5519.Google Scholar
  225. Petruzzelli, R., Barra, D., Bosa, F., Condo, S. G., Brix, O., Nuutinen, M., and Giardina, B. (1991). Biochim.Biophys.Acta 1076, 221-224.Google Scholar
  226. Petruzzelli, R., Aurelli, G., Lania, A., Gaultier, A., Desideri, A., and Giardina, B. (1996). Biochem.J. 316, 959-965.Google Scholar
  227. Poerio, E., Caporale, C., Carrano, L., Caruso, C., Vacca, F., and Buonocore, V. (1994). J.Protein Chem. 13, 187-194.Google Scholar
  228. Prabhakaran, F., Dudek, M., Raghunathan, G., and Ramnarayan, K. (2000). J.Pept.Res. 56, 12-23.Google Scholar
  229. Rakszegi, M., Scholz, E., Karpati, M., Gambler, K., Lustily, R., and Bedo, Z. (2000). Cereal Res.Commun. 28, 417-424.Google Scholar
  230. Renlund, S., Klintrot, I. M., Nunn, M., Schrimsher, J. L., Wernstedt, C., and Hellman, U. (1990). J.Chromatogr. 512, 325-335.Google Scholar
  231. Salmanowicz, P. P. and Weder, J. K. P. (1997). Z.Lebensm.Unters.Forsch. 204A, 129-135.Google Scholar
  232. Salmon, A. L., Cross, L. J., Irvine, A. E., Lappin, T. R., Dathe, M., Krause, G., Can, P., Thim, L., Beyermann, M., Rothemund, S., Bienert, M., and Shaw, C. (2001). J.Biol.Chem. 276, 10145-10152.Google Scholar
  233. Salzet, M., Chopin, V., Baert, J. L., Matias, I., and Malecha, J. (2000). J.Biol.Chem. 275, 30774-30780.Google Scholar
  234. Sarwar, G., Christensen, D. A., Finlayson, A. J., Friedman, M., Hackler, L. R., MacKenzie, S. L., Pellet, P. L., and Tkachuk, R. (1983). J.Food Sci. 48, 526-531.Google Scholar
  235. Schindler, P., Muller, D., Marki, W., Grossenbacher, H., and Richter, W. J. (1996). J.Mass.Spectrom. 31, 967-974.Google Scholar
  236. Schneir, M. and Miller, E. J. (1976). Biochim.Biophys.Acta 446, 240-244.Google Scholar
  237. Schofield, D., Mei, G., and Braganza, J. M. (1993). Clin.Sci. (London) 85, 213-218.Google Scholar
  238. Schropp, P., Belitz, H. D., Seilmeier, W., and Wieser, H. (1995). Cereal Chem. 72, 406-410.Google Scholar
  239. Schropp, P. and Wieser, H. (1996). Cereal Chem. 73, 410-413.Google Scholar
  240. Schwimmer, S. and Friedman, M. (1972). Flavour Ind. 3, 137-145.Google Scholar
  241. Sechi, S. and Chait, B. T. (1998). Anal.Chem. 70, 5150-5158.Google Scholar
  242. Seilmeier, W., Belitz, H. D., and Wieser, H. (1991). Z.Lebensm.Unters.Forsch. 192, 124-129.Google Scholar
  243. Shao, M. C. and Chin, C. C. (1992). Anal.Biochem. 207, 100-105.Google Scholar
  244. Sheu, F. S., Mahoney, C. W., Seki, K., and Huang, K. P. (1996). J.Biol.Chem. 271, 22407-22413.Google Scholar
  245. Shewry, P. R., Parmar, S.,and Miflin, B. J. (1982a). CerealChem. 60, 1-6.Google Scholar
  246. Shewry, P. R., Field, J. M., Lew, E. J. L., and Kasarda, D. D. (1982b). J.Exp.Bot. 33, 75-88.Google Scholar
  247. Shewry, P. R., Field, J. M., Faulks, A. J., Parmar, S., Miflin, B. J., Dietler, M. D., Lew, E. J. L., and Kasarda, D. D. (1984). Biochem.Biophys.Acta 788, 23-34.Google Scholar
  248. Shewry, P. R., Parmar, S., and Field, J. M. (1988). Electrophoresis 9, 727-737.Google Scholar
  249. Shieh, T. C., Kawabata, S. I., Kihara, H., Ohno, M., and Iwanaga, S. (1988). J.Biochem. 103, 596-605.Google Scholar
  250. Shishikura, F. and Takami, K. (2001). Zool.Sci. 18, 515-526.Google Scholar
  251. Shu, Q., Huang, R., and Liang, S. (2001). Eur.J.Biochem. 268, 2301-2307.Google Scholar
  252. Siedler, F., Weyher, E., and Moroder, L. (1996). J.Peptide Sci. 2, 271-275.Google Scholar
  253. Slade, A., Horrocks, A. J., Lindsay, C. D., Dunbar, B., and Virden, R. (1991). Eur.J.Biochem. 197, 75-80.Google Scholar
  254. Slump, P. (1977). J.Chromatogr. 135, 502-507.Google Scholar
  255. Smolin, L. A. and Benevenga, N. J. (1989). Methionine, homocyst(e)ine, cysteine metabolic interrelationships. In Absorption and utilization of amino acids(Friedman, E., ed.), CRC Press, Boca Raton, Florida, Vol. 1, pp. 157-187.Google Scholar
  256. Snow, J. T., Finley, J. W., and Friedman, M. (1975). Biochem.Biophys.Res.Commun. 64, 441-447.Google Scholar
  257. Snow, J. T., Finley, J. W., and Friedman, M. (1976). Int.J.Pept.Prot.Res. 8, 57-64.Google Scholar
  258. Stevenson, K. J. (1973). Anal.Biochem. 56, 450-459.Google Scholar
  259. Suyemitsu, T. (1991). Zool.Sci. 8, 505-509.Google Scholar
  260. Suzuki, J. S., Kodama, N., Molotkov, A., Aoki, E., and Tohyama, C. (1998). Biochem.J. 334, 695-701.Google Scholar
  261. Takahashi, K., Inoue, H., Sakai, K., Kohama, T., Kitahara, S., Takishima, K., Tanji, K., Tanji, M., Athauda, S. B. P., Takahashi, T., and Akanuma, H. (1991). J.Biol.Chem. 267, 14109-14117.Google Scholar
  262. Takao, T., Tominaga, N., Yoshimura, S., Hara, S., and Miyama, A. (1985). Eur.J.Biochem. 152, 199-206.Google Scholar
  263. Takeya, H., Nishida, S., Miyata, T., Kawada, S. I., Sisaka, Y., Morita, T., and Iwanaga, S. (1992). J.Biol.Chem. 266, 19480-19483.Google Scholar
  264. Tarr, G. E. (1986). Manual Edman sequencing system. In Methods of protein microcharacterization(Shively, J. E., ed.), Humana Press, Clifton, New Jersey, pp. 155-163.Google Scholar
  265. Tarr, J. E., Black, S. D., Fujita, V., and Coon, M. J. (1983). Proc.Natl.Acad.USA 80, 6552-6556.Google Scholar
  266. Teare, J. P., Punchard, N. A., Powell, J. J., Lumb, P. J., Mitchell, W. D., and Thompson, R. P. H. (1993). Clin.Chem. 39, 686-689.Google Scholar
  267. Thannhauser, T. W., Sherwood, R. W., and Scheraga, H. A. (1998). J.Protein Chem. 17, 37-43.Google Scholar
  268. Thompson, S., Bishop, D. H. L., Madgwick, P., Tatham, A. S., and Shewry, P. R. (1994). J.Agric.Food Chem. 42, 426-431.Google Scholar
  269. Tiller, J. C., Liao, C. J., Lewis, K., and Klibanov, A. M. (2001). Proc.Natl.Acad Sci.USA 98, 5981-5985.Google Scholar
  270. Toepfer-Petersen, E. and Henschen, A. (1988). Biol.Chem.Hoppe Seyler 369, 69-76.Google Scholar
  271. Tukendorf, A. and Rauser, W. E. (1990). Plant Sci. 70, 155-166.Google Scholar
  272. Usami, Y., Fujimura, Y., Suzuki, M., Ozeki, Y., Nishio, K., Fukui, H., and Titani, K. (1993). Proc.Natl.Acad.USA 90, 928-932.Google Scholar
  273. Usami, Y., Suzuki, M., Yoshida, E., Sakurai, Y., Hirano, K., Kawasaki, T., Fujimura, Y., and Titani, K. (1996). Biochem.Biophys.Res.Commun. 219, 727-733.Google Scholar
  274. Vensel, W. H., Adelstein, A. E., and Kasarda, D. D. (1995). Cereal Chem. 72, 108-114.Google Scholar
  275. Vensel, W. H., Tarr, G. E., and Kasarda, D. D. (1997). Cereal Chem. 72, 356-359.Google Scholar
  276. Wang, H., Takamiya, S., Kita, K., Oya, H., and Aoki, T. (1992). Jpn.J.Parasitol. 41, 122-131.Google Scholar
  277. Wang, Q., Keutmann, H. T., Schneyeer, A. L., and Sluss, P. M. (2000). Endocrinology 141, 3183-3193.Google Scholar
  278. Weder, J. K. P. and Hinkers, S. C. (1996). Primary structure of the trypsin-chymotrypsin inhibitor from lentil seeds. In Plant proteins from european crops: food and non-food applications(Gueguen, J., ed.), Springer, Berlin, pp. 31-33.Google Scholar
  279. Weder, J. K. P., Salmanowicz, B. P., and Köhler, P. (1997). Z.Lebensm.Unters.Forsch. 205A, 452-456.Google Scholar
  280. Wei, C., Chen. H., Zhang, Y., and Yang, K. (2000). J.Protein Chem. 19, 277-284.Google Scholar
  281. Wen, D., Corina, K., Chow, E. P., Miller, S., Janmey, P. A., and Pepinsky, R. B. (1996). Biochemistry 35, 9700-9709.Google Scholar
  282. Wilbanks, S. M. and Glazer, A. N. (1993). J.Biol.Chem. 268, 1236-1241.Google Scholar
  283. Wilson, C. M., Shewry, P. R., and Miflin, B. J. (1981a). Cereal Chem. 58, 275-281.Google Scholar
  284. Wilson, C. M., Shewry, P. R., Faulks, A. J., and Miflin, B. J. (1981b). J.Exp.Bot. 32, 1287-1293.Google Scholar
  285. Wu, Y. V., Cluskey, J. E., Krull, L. H., and Friedman, M. (1971). Can.J.Biochem. 49, 1042-1049.Google Scholar
  286. Yae, Y., Inaba, S., Sato, H., Okochi, K., Tookunaga, F., and Iwanaga, S. (1991). Biochim.Biophys.Acta 1078, 369-376.Google Scholar
  287. Yamada, H., Moriya, H., and Tsugita, A. (1991). Anal.Biochem. 198, 1-5.Google Scholar
  288. Yamashita, K., Ohkura, T., Ideo, H., Ohno, K., and Kanai, M. (1993). J.Biochem. 114, 766-769.Google Scholar
  289. Yan, J. X., Kett, W. C., Herbert, B. R., Gooley, A. A., Packer, N. H., and Williams, K. L. (1998). J.Chromatogr. 813A, 187-200.Google Scholar
  290. Yuen, S. W., Chui, A. H., Wilson, K. J., and Yuan, P. M. (1989). Biotechniques 7, 74-83.Google Scholar
  291. Zahnley, J. C. and Friedman, M. (1982). J.Protein Chem. 1, 225-240.Google Scholar
  292. Zhong, L., Arner, E. S. J., Liung, J., Aslund, F., and Holmgren, A. (1998). J.Biol.Chem. 273, 8581-8591.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  1. 1.Western Regional Research Center, Agricultural Research ServiceUSDAAlbany

Personalised recommendations