Journal of Nanoparticle Research

, Volume 3, Issue 5–6, pp 343–352 | Cite as

Nanoscale Science and Engineering in Romania

  • Dan Dascalu
  • Vladimir Topa
  • Irina Kleps


In spite of difficult working conditions and with very low financial support, many groups from Romania are involved in emerging fields, such as the nanoscale science and technology. Until the last years, this activity was developed without a central coordination and without many interactions between these research groups. In the year 2000, some of the institutes and universities active in the nanotechnology field in Romania founded the MICRONANOTECH network. The aim of this paper is to emphasize the main activities and results of the Romanian groups working in this novel domain. Most of the groups are deal with the nanomaterial technology and only few of them have activities in nanostructure science and engineering, in new concepts and device modeling and technology. This paper describes the nanotechnology research development in two of the most significant institutes from Romania: Centre for Nanotechnologies from National Institute for Research and Development in Microtehnologies (IMT-Bucharest) and from National Institute for Research and Development in Materials Physics (INCD-FM), Magurele. The Romanian research results in nanotechnology field were presented in numerous papers presented in international conferences or published in national and international journals. They are also presented in patents, international awards and fellowships. The research effort and financial support are outlined. Some future trends of the Romanian nanoscale science and technology research are also described.

nanoscience nanotechnology nanostructure nanomaterials Romanian research programs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angelescu A., I. Kleps & M. Miu, 1999. Solid state conductive material/PS contacts characterisation, ICFSI7, 20–25 June 1999, Goteborg, Sweden.Google Scholar
  2. Baptist R., 1996. Trends and developments of vacuum microelectronics in Europe. International Vacuum Microelectronics Conference, 7–12 July 1996, Saint Petersburg, Russia.Google Scholar
  3. Draghici M., M. Miu, V. Iancu, A. Nassiopoulou, I. Kleps, A. Angelescu & M.L. Ciurea, 2000. Oxidation–induced modi-fications of traps parameters in nanocrystalline porous silicon. Physica Status Solidi (a), 182(1), pp. 239–243.Google Scholar
  4. Farcas S.I., Al. Marca, Ph. Kamalaprija, U. Burger & M. Bogdan, 1999a. L'etude des interaction de la ciprofloxacine et les cyclodextrines XV-th Balcan Medical Days, Iasi 1999.Google Scholar
  5. Farcas S.I., Al. Marca, Ph. Kamalaprija, U. Burger & M. Bogdan, 1999b. NMR Study of β-CD-diclofenac system, XV-th Balcan Medical Days, Iasi 1999.Google Scholar
  6. Filip V., D. Nicolaescu & F. Okuyama, 1997. Analysis of microwave generation by field emitted electrons moving in crossing electric and magnetic fields. App. Surf. Sci., 111, 185–193.Google Scholar
  7. Gluhoi A., P. Marginean, C. Cosma & Xie Yaning, 2000. Extended X-ray absorption fine structure and X-ray diffraction studies on supported nickel catalysts. Spectochimica Acta B 55, 997.Google Scholar
  8. Gluhoi A. & P. Marginean, 2000. Acetone hydrogenation on supported nickel catalysts. The Sixth National Symposium on Catalysis-Bucharest, 2–4 July 2000.Google Scholar
  9. Hughes A.E. & S.C. Jain, 1979. Adv. Phys. 28, 719.Google Scholar
  10. Kleps I., D. Nicolaescu, I. Stamatin, N. Garcia, A. Correia, A. Gil & A. Zlatkin, 1999. Field emission properties of silicon carbide and diamond-like carbon (DLC) films made by chemical vapour deposition techniques, 2nd IVESC, 7–10 July 1998, Tsukuba, Japan. Appl. Surf. Sci. 146, 152–157.Google Scholar
  11. Kleps I., A. Gill, A. Correia & A. Angelescu, 1998a. Investigation of LPCVD silicon carbide and silicon carbonitride thin films structure and composition for field emission applications. Proc. IVC-14/NANO5, 1–4 September 1998, Birmingham, UK.Google Scholar
  12. Kleps I., D. Nicolaescu, N. Garcia, P. Serena, A. Gil & A. Zlatkin, 1998b. Investigation of porous silicon morphology for electron emission applications. Ultramicroscopy 73, 237–245.Google Scholar
  13. Kleps I., D. Nicolaescu & G. Musa, 1996. Porous silicon field emitters for display applications. IVESC-96, First International Vacuum Electron Sources Conference, 1–4 July 1996, Eindhoven, The Netherlands.Google Scholar
  14. Kleps I., D. Nicolaescu, G. Musa & C. Lungu, 1997. Porous silicon field emitters for display applications. Appl. Surf. Sci. 111, 228–232.Google Scholar
  15. Kleps I., A. Angelescu & M. Miu, 2000a. Preparation and characterisation of metallic thin films for electroluminescent devices based on porous silicon, "Nanostructured Films and Coatings". In: Chow Gan-Moog et al., eds. NATO Science Series, Series 3. High Technology. Vol. 78, pp. 337-345.Google Scholar
  16. Kleps I., A. Angelescu, R. Vasilco & D. Dascalu, 2000b. New micro-and nanoelectrode arrays for biomedical applications. BioMEMS and Biomedical Nanotechnology World 2000, 23–26 September 2000b, Columbus, Ohio.Google Scholar
  17. Kleps I., A. Angelescu & M. Miu, 20001. Micro and nanoelectrode arrays technology for pollution control, International Semiconductor Conference – CAS 2001, Sinaia, Romania.Google Scholar
  18. Kreibig U. & M. Vollmer, 1995. Optical Properties of Metal Clusters, Springer-Verlag, Berlin, ch. 4, p. 302.Google Scholar
  19. Nicolaescu D., 1994a. Technological parameters distribution effects on the current–voltage characteristics of field emitter arrays. J. Vac. Sci. Technol. B 12(2), 759–763.Google Scholar
  20. Nicolaescu D. & V. Avramescu, 1994b. Field emission diode characterisation through model parameters extraction from currentvoltage experimental data. J. Vac. Sci. Technol. B 12(2), 749–753.Google Scholar
  21. Nicolaescu D., 1994c. Cone-and wedge-gated field emission diode and microtriode modeling, Appl. Surf. Sci. 76/77, 47–57.Google Scholar
  22. Nicolaescu D., 1995a. Electric field – potential correlation factors for field emission microtriodes. J. Vac. Sci. Technol. B 13(2), 531–535.Google Scholar
  23. Nicolaescu D., 1995b. Modeling of the field emitter triode (FET) as a displacement/pressure sensor, Appl. Surf. Sci. 87/88, 61–68.Google Scholar
  24. Nicolaescu D. & V. Filip, 1996a. Modeling of a magnetic sensor based on vacuum field emission, Appl. Surf. Sci. 94/95, 87–93.Google Scholar
  25. Nicolaescu D., 1996b. The spatial dispersion of the electric field for field emission microtriodes. J. Vac. Sci. Technol. B 14(3), 1930–1933.Google Scholar
  26. Nicolaescu D., V. Filip & F. Okuyama, 1997a. Proposal for a new self focusing configuration involving porous silicon for field emission flat panel displays. J. Vac. Sci. Technol. A 15(4), 2369–2374.Google Scholar
  27. Nicolaescu D., V. Filip & F. Okuyama, 1997b. Analysis of a pressure sensor based on an array of collector assisted field emission triodes. Rev. Sci. Instrum. 68(12), 4615–4620.Google Scholar
  28. Nicolaescu D., V. Filip & F. Okuyama, 1996. Modeling of the field emission microtriode with emitter covered with porous silicon, 42nd IFES, 1995, Madison, WI, USA, Paper P51 (also published in Appl. Surf. Sci., 1996).Google Scholar
  29. Nistor L.C., V. Teodorescu, V. Topa, D. Topa & S.V. Nistor, 1987. Spatial arrangement of colloids of Ag in KCl: Ag. Cryst. Latt. Amorph. Mat. 16, 63.Google Scholar
  30. Olteanu M., S. Geadau, A. Zarna & T. Constantinescu, 2000. Supramolecular structures at the L/L interface I. Rev. Roum. Chim. 45(4), 369–374.Google Scholar
  31. Olteanu M., O. Cinteza, M. Dudau & C. Mircioiu, 1999. Research of embedding of decorporators in microemulsions. In: Risks N.B.C, Sohns T. and Voicu V.A., eds. Kluwer Academic Publishers, Dordrecht, The Nederlands, pp. 389–400.Google Scholar
  32. Olteanu M. & P. Contreras, 2000. Ultralow interfacial tensions. Colloid Surf. 170, 45–50.Google Scholar
  33. Peretz S, M. Olteanu & O. Cinteza, 2000. Influence of some polymer upon cadmium sulfide nanoparticles prepared in water-in-oil microemulsions. Rev. Roumaine de Chimie, 45(2), 185–190.Google Scholar
  34. Polosan S., E. Apostol & V. Topa, 2000. Properties of metal clusters embedded in KCl matrix. J. Optoel. Adv. Mat. 2(5), 639.Google Scholar
  35. Pruneanu S., G. Mihailescu & E. Indrea, 2001a. Nanoporous alumina membranes filled by platinum. In: Proceeding of International Semiconductor Conference– CAS 2001, Sinaia, Romania.Google Scholar
  36. Pruneanu S., G. Mihailescu, S. Neamtu, L. Olenic & L.P. Biro, 2001b. Applications of nanoporous alumina membranes. In: Proceeding of International Semiconductor Conference – CAS 2001, Sinaia, Romania.Google Scholar
  37. Sârbu N.N., T. Nyari & M.V.E. Tăzlăvan, 1999a. Exciton– phonon spectra and energy band structure of CuInSe2 crystals. Romanian Rep. Phys. 51(7–10).Google Scholar
  38. Sârbu N.N., T. Nyari & M.V.E. Tăzlăvan, 1999b. Exciton–Phonon Spectra of CuGax In1-x Se2 Crystals Proceedings of International Semiconductor Conference CAS 99, Vol. 1, p. 105.Google Scholar
  39. Topa V., A.T. Tanase & F. Despa, 1994. On the size distribution of Ag-colloids in the KCl lattice. Proc. Balkan Conf. Phys. 14, p. 93.Google Scholar
  40. Topa V., E. Apostol, S. Polosan & E. Vasile, 2001. Nanoclusters of indium in KCl crystals theory and experiments. Balkan Phys. Lett. (in press).Google Scholar
  41. Vasile E., M. Datcu, Gh. Mitroaica & V. Topa, 1997. Conversion of Ag-ions in metal clusters at low temperature. Anal. Univ. Buc. 42, pp. 246–250.Google Scholar
  42. Vasile E., M. Datcu & V. Topa, 1998. Conversion of Ag— ions in Ag nanoclusters by optical ionization. Rom. Rep. Phys. 50 (7–8).Google Scholar
  43. Vasile E., M. Datcu, S. Polosan, E. Apostol & V. Topa, 1999. Silver nanocrystals obtained by the ionization of Ag-ions in KCl. J. Cryst. Growth, 198/199, 806.Google Scholar
  44. Vékás L., M. Raşa & D. Bica, 2000a. Magnetic nanoparticles and microstructure formation in liquid dispersions. In: Proceedings of International Semiconductor Conference 23rd edn., 10–14 October 2000, Sinaia, Vol. 2, pp. 495–498 (volume published by IEEE – Electron Devices Society, USA).Google Scholar
  45. Vékás L., M. Raşa & D. Bica, 2000b. Physical properties of magnetic fluids and nanoparticles from magnetic and magnetorheological properties. J. Colloids Interf. Sci. 231, 247–254 (Academic Press, USA).Google Scholar
  46. Vékás L., D. Bica, I. Potencz, D. Gheorghe, O. Bălă u & M. Raşa, 2001. Concentration and composition dependence of rheological and magnetorheological fluids. Properties of some magnetic fluids. Prog. Colloid Polym. Sci. (Springer Verlag, 2001) (in press).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Dan Dascalu
    • 1
    • 2
  • Vladimir Topa
    • 3
  • Irina Kleps
    • 4
  1. 1.National Institute for Research and Development in Microtehnologies (IMT-Bucharest)BucharestRomania
  2. 2.University ‘Politehnica’ of Bucharest Splaiul Independentei 313Romania
  3. 3.Development in Materials Physics (INCD-FM)National Institute for Research andBucharest-MagureleRomania
  4. 4.Centre for NanotechnologiesNational Institute for Research and Development in Microtehnologies (IMT-Bucharest)BucharestRomania

Personalised recommendations