Letters in Mathematical Physics

, Volume 58, Issue 1, pp 69–79 | Cite as

Twists and Spectral Triples for Isospectral Deformations

  • Andrzej Sitarz


We construct explicitly the symmetries of the isospectral deformations as twists of Lie algebras and demonstrate that they are isometries of the deformed spectral triples.

noncommutative geometry Hopf algebras 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Connes A. and Landi, G.: Noncommutative manifolds, the instanton algebra and isospectral deformations, arXiv:math.QA/0011194Google Scholar
  2. 2.
    Kulish, P. P. and Mudrov, A. I., Twist-like geometries on a quantum Minkowski space, On the occasion of the 65th birthday of Academician Lyudvig Dmitrievich Faddeev, Trudy Mat. Inst. Steklov., Mat. Fiz. Probl. Kvantovoi Teor. Polya 226 (1999), 97-111.Google Scholar
  3. 3.
    Paschke, M.: Über nichtkommutative Geometrien, ihre Symmetrien und etwas Hochenergiephysik, PhD thesis, Mainz 2001, to appearGoogle Scholar
  4. 4.
    Grossman, A., Loupias, G. and Stein, E. M., An algebra of pseudodifferential operators and quantum mechanics in phase space, Ann. Inst. Fourier 18(2) (1969), 343-368Google Scholar
  5. 5.
    Rieffel, M.:, Compact quantum groups associated with toral subgroups, in: Representation Theory of Group and Algebras, Contemp. Math. 145, Amer. Math. Soc., Providence, R.I., (1993)Google Scholar
  6. 6.
    Rieffel, M.: Non-compact quantum groups associated with Abelian subgroups, Comm. Math. Phys. 171 (1995), 181-201.Google Scholar
  7. 7.
    Rieffel, M.: Deformation quantization for actions of R d, Mem. Amer. Math. Soc. 506 (1993).Google Scholar
  8. 8.
    Dubois-Violette, M.: On the theory of quantum groups, Lett. Math. Phys. 19 (1990), 121-126.Google Scholar
  9. 9.
    Mourre, E.: Remarques sur le caractére algébrique du procédépseudo-differentiel et de certaines de ses extensions, Ann. Inst.Henri Poincare, Phys. Theor. 53(3) (1990), 259-182.Google Scholar
  10. 10.
    Connes, A. and Dubois-Violette, M.: in preparation.Google Scholar
  11. 11.
    Paschke, M. and Sitarz A.: The geometry of noncommutative symmetries, Acta Phys. Pol. B 31, No. 11, (2000).Google Scholar
  12. 12.
    Sitarz, A.: Rieffel's deformation quantization and isospectral deformations, arXiv:math.QA/0102075, to appear in Int. J. Theor. Phys. Google Scholar
  13. 13.
    Chari, V. and Pressley. A.: A Guide to Quantum Groups, Cambridge Univ. Press, 1994.Google Scholar
  14. 14.
    Majid, S.: Foundations of Quantum Group Theory, Cambridge Univ. Press, 1995.Google Scholar
  15. 15.
    Connes, A.: Noncommutative Geometry, Academic Press, New York, 1994Google Scholar
  16. 16.
    Connes, A.: Noncommutative geometry year 2000, arXiv:math.QA/0011193Google Scholar
  17. 17.
    Majid, S. and Oeckl, R.: Twisting of quantum differentials and the Planck scale Hopf algebra, Comm. Math. Phys. 205 (1999), 617-655.Google Scholar
  18. 18.
    Várilly, J. C.: Quantum symmetry groups of noncommutative spheres, arXiv:math.QA/0102065.Google Scholar
  19. 19.
    Sitarz, A.: Dynamical noncommutativity, in preparation.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Andrzej Sitarz
    • 1
    • 2
  1. 1.Laboratoire de Physique ThéoriqueUniversité, Paris-SudORSAY CedexFrance
  2. 2.Institute of PhysicsJagiellonian UniversityKrakówPoland

Personalised recommendations