Conservation Genetics

, Volume 2, Issue 4, pp 325–335 | Cite as

Inbreeding depression and the maintenance of genetic load in Melitaea cinxia metapopulations

  • Sari Haikola
  • Wilhelm Fortelius
  • Robert B. O'Hara
  • Mikko Kuussaari
  • Niklas Wahlberg
  • Ilik J. Saccheri
  • Michael C. Singer
  • Ilkka Hanski
Article

Abstract

The effects of inbreeding on fitness and themaintenance of genetic load in metapopulationsof the endangered Glanville fritillarybutterfly (Melitaea cinxia) were examinedin four laboratory experiments. In FinlandM. cinxia occurs as a large metapopulationconsisting of small local populations with fastturnover, whereas in southern France thespecies has a more continuous populationstructure. In the experiments, we compared theperformance of crosses between full sibs,crosses between members of different familieswithin populations, and crosses betweenindividuals from different populations. Theseexperiments were replicated using insects fromtwo different regions, Finland and southernFrance, between which the frequency of naturalinbreeding should differ substantially becauseof differing population structure. In Finnishbutterflies, the rate of successful mating waslower among insects derived from small thanfrom large natural populations, probablyreflecting the effect of past inbreedinghistory. Mating between full sibs lowered egghatching rate in all experiments. Thisreduction of egg hatching rate was more severeamong French butterflies with a more continuouspopulation structure than among Finnishbutterflies with small naturally fragmentedpopulations and with a history of repeatedrounds of inbreeding in the past. This resultsuggests that recurrent inbreeding has led topartial purging of deleterious recessives fromthe Finnish metapopulation. Nonetheless,substantial genetic load still remains in thismetapopulation, and we discuss possible reasonswhy this should be the case.

genetic load inbreeding depression metapopulation Melitaea cinxia population turnover 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bataillon T,Kirkpatrick M (2000) Inbreeding depression due to mildly deleterious mutations in finite populations: size does matter. Genet. Res., 75, 75-81.Google Scholar
  2. Byers DL,Waller DM (1999) Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu. Rev. Ecol. Syst., 30, 479-513.Google Scholar
  3. Charlesworth D,Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst., 18, 237-268.Google Scholar
  4. Crnokrak P,Roff DA (1999) Inbreeding depression in the wild. Heredity, 83, 260-270.Google Scholar
  5. Falconer DS,Mackay TFC (1996) Introduction to Quantitative Genetics, 4th edn. Longman, Harlow, England.Google Scholar
  6. Frankel OH, Soulé ME (1981) Conservation and Evolution. Cambridge University Press, New York.Google Scholar
  7. Hanski I (1999) Metapopulation Ecology. Oxford University Press, Oxford.Google Scholar
  8. Hanski I (2001) Spatially realistic models of metapopulation dynamics and their implication for ecological, genetic and evolutionary processes. In: Plants stand still but their genes don't (ed. Silvertown J), in press. Oxford University Press, Oxford.Google Scholar
  9. Hanski I,Kuussaari M,Nieminen M (1994) Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology, 75, 747-762.Google Scholar
  10. Hanski I,Pakkala T,Kuussaari M,Lei G (1995a) Metapopulation persistence of an endangered butterfly in a fragmented landscape. Oikos, 72, 21-28.Google Scholar
  11. Hanski I,Pöyry J,Pakkala T,Kuussaari M (1995b) Multiple equilibria in metapopulation dynamics. Nature, 377, 618-621.Google Scholar
  12. Hedrick PW (1994) Purging inbreeding depression and the probability of extinction: full-sib mating. Heredity, 73, 363-372.Google Scholar
  13. Hedrick PW,Kalinowski ST (2000) Inbreeding depression in conservation biology. Annu. Rev. Ecol. Syst., 31, 139-162.Google Scholar
  14. Jiménez JA,Hughes KA,Alaks G,Graham L,Lacy RC (1994) An experimental study of inbreeding depression in a natural habitat. Science, 266, 271-273.Google Scholar
  15. Kirkpatrick M,Jarne P (2000) The effects of a bottleneck on inbreeding depression and the genetic load. Am. Nat., 155, 154-167.Google Scholar
  16. Kuussaari M (1998) Biology of the Glanville fritillary butterfly (Melitaea cinxia). PhD thesis, University of Helsinki.Google Scholar
  17. Kuussaari M,Saccheri I,Camara M,Hanski I (1998) Allee effect and population dynamics in the Glanville fritillary butterfly. Oikos, 82, 384-392.Google Scholar
  18. Lacy RC,Ballou JD (1998) Effectiveness of selection in reducing the genetic load in populations of Peromyscus polionotus during generations of inbreeding. Evolution, 52, 900-909.Google Scholar
  19. Marttila O,Haahtela T,Aarnio H,Ojalainen P (1990) Suomen päiväperhoset. Kirjayhtymä Oy, Helsinki.Google Scholar
  20. Nieminen M,Singer MC,Fortelius W,Schöps K,Hanski I (2001) Experimental confirmation that inbreeding depression increases extinction risk in butterfly populations. Am. Nat., in press.Google Scholar
  21. Partridge L,Mackay TFC,Aitken S (1985) Male mating success and fertility in Drosophila melanogaster. Genet. Res., 46, 279-285.Google Scholar
  22. Ralls K,Ballou J (1983) Extinction: lessons from zoos. In: Genetics and conservation: A reference for managing wild animal and plant populations (eds. Schonewald-Cox CM,Chambers SM,MacBryde B,Thomas WL), pp. 164-184. The Benjamin/Cummings Publishing Company, Menlo Park, California.Google Scholar
  23. Richards CM (2000) Inbreeding depression and genetic rescue in a plant metapopulation. Am. Nat., 155, 383-394.Google Scholar
  24. Saccheri I,Kuussaari M,Kankare M,Vikman P,Fortelius W,Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature, 392, 491-494.Google Scholar
  25. Saccheri IJ,Brakefield PM,Nichols RA (1996) Severe inbreeding depression and rapid fitness rebound in the butterfly Bicyclus anynana (Satyridae). Evolution, 50, 2000-2013.Google Scholar
  26. Sharp PM (1984) The effect of inbreeding on competitive malemating ability in Drosophila melanogaster. Genetics, 106, 601-612.Google Scholar
  27. Stevens JP,Bougourd SM (1988) Inbreeding depression and the outcrossing rate in natural populations of Allium schoenoprasum L. (wild chives). Heredity, 60, 257-261.Google Scholar
  28. Wang J (2000) Effects of population structures and selection strategies on the purging of inbreeding depression due to deleterious mutations. Genet. Res., 76, 75-86.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Sari Haikola
    • 1
  • Wilhelm Fortelius
    • 2
  • Robert B. O'Hara
    • 3
  • Mikko Kuussaari
    • 4
  • Niklas Wahlberg
    • 5
  • Ilik J. Saccheri
    • 6
  • Michael C. Singer
    • 7
  • Ilkka Hanski
    • 3
  1. 1.Tvärminne Zoological StationHankoFinland
  2. 2.Sydväst Polytechnic, ForstinstitutsvägenEkenäsFinland
  3. 3.Department of Ecology and Systematics, Division of Population BiologyUniversity of HelsinkiFinland
  4. 4.Finnish Environment Institute, Nature and Land Use DivisionHelsinkiFinland
  5. 5.Department of ZoologyStockholm UniversityStockholmSweden
  6. 6.Division of Population and Evolutionary Biology, School of Biological SciencesUniversity of LiverpoolLiverpoolUK
  7. 7.Section of Integrative BiologyUniversity of TexasAustinUSA

Personalised recommendations