Advertisement

Differential Equations

, Volume 37, Issue 9, pp 1291–1302 | Cite as

On an Integral Representation of Resurgent Functions

  • B. Yu. Sternin
  • V. E. Shatalov
Article
  • 54 Downloads

Keywords

Differential Equation Partial Differential Equation Ordinary Differential Equation Functional Equation Integral Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Écalle, J., Les fonctions résurgentes. I, II, III, Paris, 1981 1985.Google Scholar
  2. 2.
    Candelpergher, B., Nosmas, J.C., and Pham, F., Approche de la résurgence, Paris, 1993.Google Scholar
  3. 3.
    Delabaere, E., Computer Algebra and Differential Equations, 1994, vol. 193, pp. 59–102.Google Scholar
  4. 4.
    Sternin, B. and Shatalov, V., Borel-Laplace Transform and Asymptotic Theory, Florida, 1996.Google Scholar
  5. 5.
    Écalle, J., Introduction à l'accélération et à ses applications, Paris, 1993.Google Scholar
  6. 6.
    Ramis, J.-P., in Springer Lecture Notes in Physics, 1980, no. 126.Google Scholar
  7. 7.
    Ecalle, J., in Bifurcations and Periodic Orbits of Vector Fields, Kluwer Academic Publishers, 1993, pp. 75–184.Google Scholar
  8. 8.
    Schulze, B.-W., Pseudodifferential Operators on Manifolds with Singularities, Amsterdam, 1991.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • B. Yu. Sternin
    • 1
  • V. E. Shatalov
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations