Letters in Mathematical Physics

, Volume 58, Issue 1, pp 81–90 | Cite as

Theta Functions on Noncommutative Tori

  • Albert Schwarz


Ordinary theta functions can be considered as holomorphic sections of line bundles over tori. We show that one can define generalized theta functions as holomorphic elements of projective modules over noncommutative tori (theta vectors). The theory of these new objects is not only more general, but also much simpler than the theory of ordinary theta-functions. It seems that the theory of theta vectors should be closely related to Manin's theory of quantized theta functions, but we don't analyze this relation.

noncommutative torus theta function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Connes, A.: C*-algèbres et géometrie différentielle, C.R. Acad. Sci. Paris 290 (1980), 599-604.Google Scholar
  2. 2.
    Connes, A. and Rieffel, M.: Yang Mills for noncommutative two-tori, Contemp. Math. 66 (1987), 237–266.Google Scholar
  3. 3.
    Rieffel, M.: Projective modules over higher-dimensional noncommutative tori, Canad. J. Math. 40(2) (1988), 257–338.Google Scholar
  4. 4.
    Rieffel, M. and Schwarz, A.: Morita equivalence of multidimensional noncommutative tori, Internat. J. Math 10(2) (1999), 289–299Google Scholar
  5. 5.
    Schwarz, A.: Gauge theories on noncommutative spaces, ICMP lecture, hep-th/0011261.Google Scholar
  6. 6.
    Schwarz, A.: Morita equivalence and duality, Nuclear Phys. B 534 (1998), 720–738.Google Scholar
  7. 7.
    Konechny, A. and Schwarz, A.: BPS states on noncommutative tori and duality, Nuclear Phys. B 550 (1999), 561–584.Google Scholar
  8. 8.
    Konechny, A. and Schwarz, A.:Moduli spaces of maximally supersymmetric solutions on noncommutative tori and noncommutative orbifolds, J. High Energy Phys 09 (2000), 1–23.Google Scholar
  9. 9.
    Mumford, D.: Tata Lectures on Theta I, Birkhäuser, Basel (1983).Google Scholar
  10. 10.
    Mumford, D.: Tata Lectures on Theta III (with M. Nori and P. Norman), Birkhäuser, Basel (1991).Google Scholar
  11. 11.
    Manin, Yu.: Quantized theta functions, In: Common Trends inMathematics andQuantum Field Theories (Kyoto, 1990), Prog. Theoret. Phys. Supplement 102 (1990), 219–228.Google Scholar
  12. 12.
    Manin, Yu.: Mirror symmetry and quantization of abelian varieties, Preprint math. AG/0005143.Google Scholar
  13. 13.
    Manin, Yu.: Theta functions, quantum tori and Heisenberg groups, Lett. Math. Phys. 56(3) (2001), math.AG/0011197Google Scholar
  14. 14.
    Soibelman, Ya.: Quantum tori, mirror symmetry and deformation theory, Lett. Math. Phys. 56(3) (2001), math.QA/0011162Google Scholar
  15. 15.
    Schwarz, A.: Noncommutative instantons: a new approach, Commun. Math. Phys. 221 (2001), 433–450, hep-th/0102182.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Albert Schwarz
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaDavisU.S.A.

Personalised recommendations