Advertisement

Biologia Plantarum

, Volume 44, Issue 3, pp 361–366 | Cite as

The Effect of Metabolic Inhibitors, Sugars and Fusicoccin on the Electrical Potential Difference Arising Across an Intact Chenopodium Rubrum L. Plant

  • B. Živanović
  • M. Vuletić
  • Z^. Vučinić
Article

Abstract

An analysis of the effect of metabolic inhibitors, sugars, and fusicoccin on the trans-plant electrical potential difference arising across one-week-old green or herbicide-treated Chenopodium rubrum L. plants was performed. The substances were applied either to the solution bathing the root or in the form of drops to the stem. The respiratory inhibitors (KCN and salicylhydroxamic acid), sulfhydryl agents (N-ethylmaleimide and p-chloromercuribenzene sulfonic acid) and proton ionophore (carbonyl cyanide m-chlorophenylhydrazone) affected the electrical potential, the kinetics of the induced changes varying with different inhibitors and site of application. None of the applied sugars (sucrose, glucose or sorbitol), ATPase stimulator fusicoccin or inhibitor vanadate exerted any appreciable effect on the electrical potential. An effect of sucrose could be observed in the case of its application immediately following de-rooting, especially in the case of herbicide-treated plants. These results we explain by non-participation of the sucrose transporter or the proton ATPase in the generation of the electrical potential difference across intact plants (apoplast-apoplast configuration).

apoplast ion transport respiration symplast 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamec, L., Krekule, J.: Changes in membrane potential in Chenopodium rubrum during the course of photoperiodic flower induction.-Biol. Plant. 31: 336–343, 1989a.Google Scholar
  2. Adamec, L., Krekule, J.: Changes in transorgan electric potential in Chenopodium rubrum during the course of photoperiodic flower induction.-Biol. Plant. 31: 344–353, 1989b.Google Scholar
  3. Anderson, W.P., Hendrix, D.L., Higinbotham, N.: The effect of cyanide and carbon monoxide on the electrical potential and resistance of cell membranes.-Plant Physiol. 54: 712–716, 1974.Google Scholar
  4. Beffagna, N., Coccuci, S., Marré, E.: Stimulating effect of fusicoccin on K-activated ATPase in plasmalemma preparations from higher plant tissues.-Plant Sci. Lett. 8: 91–98, 1977.Google Scholar
  5. Beffagna, N., Marré, E., Coccuci, S.M.: Cation-activated ATPase activity of plasma-enriched membrane preparations from maize coleoptiles.-Planta 146: 387–391, 1979.Google Scholar
  6. Cocucci, M., Marré, E., Ballarin Denti, A., Scacchi, A.: Characteristics of fusicoccin-induced changes of transmembrane potential and ion uptake in maize root segments.-Plant Sci. Lett. 6: 143–156, 1976.Google Scholar
  7. Cocucci, M., Ballarin-Denti, A., Marré, E.: Effect of orthovanadate on H+ secretion, K+ uptake, electric potential difference and membrane ATPase activities of higher plant tissues.-Plant Sci. Lett. 17: 391–400, 1980.Google Scholar
  8. Due, G.: Interpretation of the electrical potential on the surface of plant roots.-Plant Cell Environ. 16: 501–510, 1993.Google Scholar
  9. Giroldini, W.: Extracellular light-evoked potentials in Tradescantia albiflora.-Plant Physiol. Biochem. 26: 133–138, 1988.Google Scholar
  10. Greppin, H., Horwitz, B.A., Horwitz, L.P.: Light-stimulated bioelectric response of spinach leaves and photoperiodic induction.-Z. Pflanzenphysiol. 68: 336–345, 1973.Google Scholar
  11. Hadži-Tašković Šukalović, V., Vuletić, V.: Properties of peroxidase activity in plasma membrane and cell wall from maize root.-Yugoslav. physiol. pharmacol. Acta 34: 103–109, 1998.Google Scholar
  12. Felle, H., Bentrup, F.-W.: A study of the primary effect of the uncoupler carbonyl cyanide m-chlorophenylhydrazone on membrane potential and conductance in Riccia fluitans.-Biochem. biophys. Acta. 464: 179–187, 1977.Google Scholar
  13. Felle, H., Bentrup, F.-W.: Hexose transport and membrane depolarization in Riccia fluitans.-Planta 147: 471–476, 1980.Google Scholar
  14. Frachisse-Stoiljsković, J.-M., Julien, J.L.: The coupling between extra-and intracellular electric potentials in Bidens pilosa L.-Plant Cell Environ. 16: 633–641, 1993.Google Scholar
  15. Jaffe, M.J.: Phytochrome-mediated bioelectric potentials in mung bean seedlings.-Science 162: 1016–1017, 1968.Google Scholar
  16. Katz, D.B., Sussman, M.R.: Inhibition and labeling of the plant plasma membrane H+-ATPase with N-ethylmaleimide.-Plant Physiol. 83: 977–981, 1987.Google Scholar
  17. Lalonde, S., Boles, E., Hellmann, H., Barker, L., Patrick, J.W., Frommer, W.B., Ward, J.M.: The dual function of sugar carriers: transport and sugar sensing.-Plant Cell 11: 707–726, 1999.Google Scholar
  18. Lambers, H., Day, D., Azcón-Bieto, J.: Cyanide-resistant respiration in roots and leaves. Measurements with intact tissues and isolated mitochondria.-Physiol. Plant. 58: 148–154, 1983.Google Scholar
  19. Lichtner, F.T., Lucas, W.J., Spanswick, R.M.: Effect of sulfhydryl reagents on the biophysical properties of the plasmalemma of Chara corallina.-Plant Physiol. 68: 899–904, 1981.Google Scholar
  20. Montavon, M., Horwitz, B.A., Greppin, H.: Far-red light-induced changes in intracellular potentials of spinach mesophyll cells.-Plant Physiol. 73: 671–676, 1983.Google Scholar
  21. Novacky, A., Ullrich-Eberius, C.I., Lüttge, U.: Membrane potential changes during transport of hexoses in Lemna gibba G1.-Planta 138: 263–270, 1978.Google Scholar
  22. Novak, B., Greppin, H.: High-frequency oscillations and circadian rhythm of the membrane potential in spinach leaves.-Planta 144: 235–240, 1979.Google Scholar
  23. Polevoi, V.V., Sinyutina, N.F., Salamatova, T.S., Inge-Vechtomova, N.I., Tankelyun, O.V., Sharova, E.I., Shishova, M.F.: Mechanism of auxin action: second messengers.-In: Smith, A.R., Berry, A.W., Harpham, N.V.J., Moshkov, I.E., Novikova, G.V., Kulaeva, O.N., Hall, M.A. (ed.): Plant Hormone Signal Perception and Transduction. Pp. 223–231. Kluwer Academic Publishers, Dordrecht 1996.Google Scholar
  24. Shabala, S., Newman, I.: Light-induced changes in hydrogen, calcium, potassium, and chloride ion fluxes and concentrations from the mesophyll and epidermal tissues of bean leaves. Understanding the ionic basis of light-induced bioelectrogenesis.-Plant Physiol. 119: 1115–1124, 1999.Google Scholar
  25. Slayman, C.L., Slayman, C.W.: Depolarization of the plasma membrane of Neurospora during active transport of glucose: evidence for proton-dependent cotransport system.-Proc. nat. Acad. Sci. USA. 71: 1935–1939, 1974.Google Scholar
  26. Stanković, B., Zawadzki, T., Davies, E.: Characterization of the variation potential in sunflower.-Plant Physiol. 115: 1083–1088, 1997.Google Scholar
  27. Ullrich, C.I., Novacky, A.J.: Extra-and intracellular pH and membrane potential changes induced by K+, Cl, H2PO4 , and NO3 uptake and fusicoccin in root hairs of Limnobium stoloniferum.-Plant Physiol. 94: 1561–1567, 1990.Google Scholar
  28. Vianello, A., Macri, F.: Generation of superoxide anion and hydrogen peroxide at the surface of plant cells.-J. Bioenerg. Biomembr. 23: 409–423, 1991.Google Scholar
  29. Vreugdenhil, D., Spanswick, R.: Measurements of the transcotyledon potential in Ricinus.-J. Plant Physiol. 133: 567–571, 1988.Google Scholar
  30. Vučinić, Ž., Vuletić, M.: The effect of addition of sucrose on the energy status and the trans-root electrical potential difference of excised maize roots.-Plant Cell Physiol. 36: 45–92, 1995.Google Scholar
  31. Vuletić, M., Vučinić, Ž.: The effect of metabolic inhibitors on the trans-root electrical potential difference of excised maize roots.-J. Plant Physiol. 147: 691–696, 1996.Google Scholar
  32. Vuletić, M., Vučinić, Ž.: Longitudinal component of trans-root electrical potential difference: evidence from application of metabolic inhibitors to the cut end of excised maize roots.-Biol. Plant. 40: 203–209, 1997/1998.Google Scholar
  33. Zawadzki, T., Trebacz, T.: Extra-and intracellular measurement of action potentials in the liverwort Conocephalum conicum.-Physiol. Plant. 64: 477–481, 1985.Google Scholar
  34. Živanović, B., Vučinić, Ž.: Photoperiodic induction of flowering in Chenopodium rubrum L. might be controlled by an oscillatory mechanism.-J. Plant Physiol. 149: 707–713, 1996.Google Scholar
  35. Živanović, B., Vuletić, M., Vučinić, Ž.: Light-induced transients of bioelectric potential difference across a Chenopodium rubrum L. plant.-Biochem. Physiol. Pflanz. 188: 211–219, 1992.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • B. Živanović
    • 1
  • M. Vuletić
    • 2
  • Z^. Vučinić
    • 1
  1. 1.Center for Multidisciplinary StudiesUniversity of BelgradeBelgradeYugoslavia
  2. 2.Maize Research InstituteBelgradeYugoslavia

Personalised recommendations