Journal of Mathematical Sciences

, Volume 107, Issue 5, pp 4305–4332 | Cite as

On Approximation of Groups, Group Actions, and Hopf Algebras

  • M. A. Alekseev
  • L. Yu. Glebskii
  • E. I. Gordon


We give new examples and criteria in the theory of approximation of groups by finite groups. Bibliography: 17 titles.


Group Action Finite Group Hopf Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Albeverio,J.-E. Fenstad,R. HØegh-Krohn, andT. LindstrØm, “Nonstandard methods in stochastic analysis and mathematical physics, ” Pure Appl. Math., 122, Academic Press (1986).Google Scholar
  2. 2.
    S. Albeverio,E. Gordon, andA. Khrennikov, “Finite dimensional approximations of operators in the spaces of functions on locally compact abelian groups, ” Reports from MASDA, Report 9841, Sept. (1998).Google Scholar
  3. 3.
    V. Bergelson, “Ergodic Ramsey theory, ” Contemporary Math., 65, 63–87 (1987).Google Scholar
  4. 4.
    E. Gordon, Nonstandard Methods in Commutative Harmonic Analysis, AMS, Providence, Rhode Island (1997).Google Scholar
  5. 5.
    F. Greenleaf, Invariant Means on Topological Groups and Their Applications, New York (1969).Google Scholar
  6. 6.
    M. Gromov, “Endomorphisms of symbolic algebraic varieties, ” J. Eur. Math. Soc., 1, No. 2, 109–197 (1999).Google Scholar
  7. 7.
    D. Kazhdan, “On ɛ-representations, ” Israel J. Math., 43, No. 4, 315–323 (1982).Google Scholar
  8. 8.
    C. C. Chang andH. J. Keisler, Model Theory, North-Holland, Amsterdam; American Elsevier, New York (1973).Google Scholar
  9. 9.
    P. Loeb, “Conversion from nonstandard to standard measure spaces and applications in probability theory, ” Trans. Amer. Math. Soc., 211, 113–122 (1975).Google Scholar
  10. 10.
    A. I. Mal'tsev, Algebraic Systems [in Russian], Nauka, Moscow (1967).Google Scholar
  11. 11.
    A. M. Stepin, “Approximations of groups and group actions. Cayley topology. Ergodic theory of Z d-actions, ” London Math. Soc. Lect. Notes Ser., Vol. 228, Cambridge University Press, 475–484 (1966).Google Scholar
  12. 12.
    L. S. Pontryagin, Continuous Groups [ in Russian], 4th ed., Moscow (1984).Google Scholar
  13. 13.
    A. B. Sossinskii, “Did Nicolas Bourbaki die?” in: Matematicheskoe Prosveshchenie, 3rd Ser., No. 2, pp. 4–12 (1998).Google Scholar
  14. 14.
    J. W. Cannon,W. J. Floid, andW. R. Parry, “Introductory notes on Richard Thompson's groups, ” LEnseignement Mathématique, 42, 215–256 (1996).Google Scholar
  15. 15.
    A. M. Vershik andE. I. Gordon, “Groups that are locally embeddable in the class of finite groups, ” Algebra Analiz, 9, No. 1, 71–97 (1997).Google Scholar
  16. 16.
    A. M. Vershik, “Countable groups close to finite ones, ” in: Invariant Means on Topological Groups and Their Applications, pp. 112–135 (1973).Google Scholar
  17. 17.
    F. A. Berezin, “Quantization, ” Izv. Akad. Nauk SSSR, Ser. Mat., 38, No. 5, 1116–1175 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • M. A. Alekseev
    • 1
  • L. Yu. Glebskii
    • 1
  • E. I. Gordon
    • 1
  1. 1.The Lower-Novgorod State UniversityRussia

Personalised recommendations