Advertisement

Journal of Materials Science

, Volume 36, Issue 21, pp 5059–5072 | Cite as

Review Functional materials of porous metals made by P/M, electroplating and some other techniques

  • P. S. Liu
  • K. M. Liang
Article

Abstract

Porous metals used as functional materials have been developed greatly and swiftly in recent years. In this paper, some preparative methods and relative applications are reviewed primarily for these materials. These methods concentratively deal with powder metallurgy (PM) and electroplating techniques, and these applications cover filtration and separation, fluid distribution and control, energy absorption, electromagnetic shielding, heat exchangers, electrode matrixes, reaction materials, biomaterials, and so on.

Keywords

Polymer Filtration Heat Exchanger Powder Metallurgy Energy Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Bray, Engineering Materials & Design 16(1) (1972) 19.Google Scholar
  2. 2.
    D. C. Dilley, Machinery and Production Engineering 125 (1974) 24.Google Scholar
  3. 3.
    G. J. Davies and Shu Zhen, J. Mater. Sci. 18 (1983) 1899.Google Scholar
  4. 4.
    A. G. Evans et al., Progress in Materials Science 43 (1999) 171.Google Scholar
  5. 5.
    L. J. Gibson and M. F. Ashby, “Cellular Solids,” 2nd ed. (Cambridge University Press, Cambridge, 1997).Google Scholar
  6. 6.
    M. F. Ashby et al., “Cellular Metals, a Design Guide” (Engineering Department, Cambridge University, Cambridge, 1997).Google Scholar
  7. 7.
    K. Siziki and T. Nakagawa, Engineering Materials 30(10) (1982) 104.Google Scholar
  8. 8.
    X. Q. Yu et al., Journal of Functional Materials 24(5) (1993) 438.Google Scholar
  9. 9.
    H. P. Tang and Z. D. Zhang, Rare Metal Materials and Engineering 26(1) (1997) 1.Google Scholar
  10. 10.
    P. Y. Huang, “Principles of Powder Metallurgy” (Metallurgical Industry Press, Beijing, 1997) p. 1.Google Scholar
  11. 11.
    T. J. Lu et al., Acta Mater. 46(10) (1998) 3619.Google Scholar
  12. 12.
    E. Maine and M. F. Ashby, Advanced Engineering Materials 2(4) (2000) 205.Google Scholar
  13. 13.
    W. P. Minnear and B. P. Bewlay, US Patent 5213612 (1991).Google Scholar
  14. 14.
    T. Xue, Materials for Mechanical Engineering 16(1) (1992) 4.Google Scholar
  15. 15.
    K. Marumoto and M. Tokio, JP 106907 (1996).Google Scholar
  16. 16.
    MPR, Met. Powder Rep. April (1997) 39.Google Scholar
  17. 17.
    H. D. Kunze et al., Powder Metallurgy International 25(4) (1993) 182.Google Scholar
  18. 18.
    J. Baumeister, German Patent DE 4018360 (1990).Google Scholar
  19. 19.
    J. Baumeister and H. Schrader, German Patent DE 4101630 (1991).Google Scholar
  20. 20.
    S. Katz and J. L. Greene, US Patent 3694325 (1972).Google Scholar
  21. 21.
    I. Matsumoto et al., US Patent 4251603 (1981).Google Scholar
  22. 22.
    B. J. Xia et al., Chinese Journal of Power Sources 2(1994) 4.Google Scholar
  23. 23.
    W. Wang, Battery Bimonthly 25(4) (1995) 181.Google Scholar
  24. 24.
    W. H. Zhu et al., Chinese Journal of Powder Sources 20(1) (1996) 5.Google Scholar
  25. 25.
    G. X. Yu, Battery Bimonthly 26(2) (1996) 86.Google Scholar
  26. 26.
    D. Kohler et al., J. Electrochem. Soc. 137(6) (1990) 1750.Google Scholar
  27. 27.
    M. Oshitani, JP 18304 (1992).Google Scholar
  28. 28.
    M. Honda et al., JP 2795A (1992).Google Scholar
  29. 29.
    H. Sugikawa, JP 274869 (1990).Google Scholar
  30. 30.
    Idem., JP 130393 (1991).Google Scholar
  31. 31.
    J. Babjak et al., EP 0402738 A2 (1990).Google Scholar
  32. 32.
    L. Q. Zhang and F. H. Chang, Journal of Functional Materials 27(1) (1996) 88.Google Scholar
  33. 33.
    E. Kamijo et al., US Patent 4326931 (1982).Google Scholar
  34. 34.
    H. Sugikawa, JP 290792 (1989).Google Scholar
  35. 35.
    Idem., JP 274895 (1990).Google Scholar
  36. 36.
    J. R. Brannan et al., US Patent 5098544 (1992).Google Scholar
  37. 37.
    H. Sugikawa, JP 138792 (1995).Google Scholar
  38. 38.
    G. X. Yu, Battery Bimonthly 25(3) (1995) 140.Google Scholar
  39. 39.
    T. Nishi and M. Honda, JP 31446 (1993).Google Scholar
  40. 40.
    L. Wo et al., Battery Bimonthly 21(6) (1991) 9.Google Scholar
  41. 41.
    I. Watanabe et al., JP 248491 (1994).Google Scholar
  42. 42.
    W. S. Yin, Journal of Functional Materials 27(2) (1996) 97.Google Scholar
  43. 43.
    Q. C. Gu et al., ibid. 27(2) (1996) 135.Google Scholar
  44. 44.
    Y. Maeda and T. Kawakoe, JP 109597 (1995).Google Scholar
  45. 45.
    M. Iwasaki et al., JP 89697 (1988).Google Scholar
  46. 46.
    H. G. Hanusa, US Patent 3549505 (1970).Google Scholar
  47. 47.
    H. Sugikawa, JP 290792 (1989).Google Scholar
  48. 48.
    M. Saika et al., JP 116196 (1992).Google Scholar
  49. 49.
    M. Nishimoto et al., JP 73988 (1990).Google Scholar
  50. 50.
    F. Yoshiakira et al., JP 84519 (1994).Google Scholar
  51. 51.
    T. R. Thomas and J. P. S. Badyal, UK Patent, GB 2287720A (1995).Google Scholar
  52. 52.
    P. S. Liu et al., Mater. Sci. & Technol. 16(5) (2000) 575.Google Scholar
  53. 53.
    H. Sugikawa et al., JP 274895 (1990).Google Scholar
  54. 54.
    Idem., JP 130394 (1991).Google Scholar
  55. 55.
    Idem., JP 130395 (1991).Google Scholar
  56. 56.
    S. Satoo et al., JP 39714 (1996).Google Scholar
  57. 57.
    A. Sosnik, US Patent 2434775 (1948).Google Scholar
  58. 58.
    J. C. Elliott, US Patent 2751289 (1956).Google Scholar
  59. 59.
    L. M. Niebylski et al., US Patent 3743353 (1974).Google Scholar
  60. 60.
    S. O. Fiedler et al., US Patent 2974034 (1961).Google Scholar
  61. 61.
    W. S. Fiedler, US Patent 3214265 (1965).Google Scholar
  62. 62.
    Y. Zhang et al., Materials Science Progress 7(6) (1993) 473.Google Scholar
  63. 63.
    S. Akiyama et al., U.S. Patent 4713277 (1987).Google Scholar
  64. 64.
    I. Jin et al., US Patent 4973358 (1990).Google Scholar
  65. 65.
    O. Prakash et al., Mater. Sci. Engng. A 199 (1995) 195.Google Scholar
  66. 66.
    A. E. Simone and L. J. Gibson, Acta Mater. 46(9) (1998) 3109.Google Scholar
  67. 67.
    Z. A. Munir, Ceramic Bulletin 67(2) (1988) 342.Google Scholar
  68. 68.
    H. C. Yi et al., J. Mater. Sci. 24 (1989) 3449.Google Scholar
  69. 69.
    J. Subrahmanyan and M. Vijayakumar, ibid. 27 (1992) 6249.Google Scholar
  70. 70.
    I. Pborovinskaya, Pure & Appl. Chem. 64(7) (1992) 919.Google Scholar
  71. 71.
    J. Z. Song et al., Material Science & Technology 5(1) (1997) 1.Google Scholar
  72. 72.
    K. Y. Zhao et al., Powder Metallurgy Technology 15(1) (1997) 26.Google Scholar
  73. 73.
    H. B. Wang et al., Journal of Functional Materials 28(2) (1997) 115.Google Scholar
  74. 74.
    V. I. Shapavalov, US Patent 5181549 (1993).Google Scholar
  75. 75.
    V. I. Shapavalov and A. G. Timchenko, Physics Metals Metallogr 76 (1993) 335.Google Scholar
  76. 76.
    A. E. Simone and L. J. Gibson, Acta Materialia 44(4) (1996) 1437.Google Scholar
  77. 77.
    A.Γ. KoctophobΠopoЩk, M e T. (4) (1983) 53.Google Scholar
  78. 78.
    K. Sieradzki and R. C. Newman, EP 0392738 (1990).Google Scholar
  79. 79.
    A. A. Dubikovskaya et al., Sov. Mater. Sci. 26(3) (1990) 372.Google Scholar
  80. 80.
    W. Schaefer, Gov. Res. Announc. Index (1991) 2.Google Scholar
  81. 81.
    M. Otsuka et al., in Proceedings of the RASELM'91 on Science and Engineering of Light Metals (Tokyo, Japan, Oct. 1991) p. 999.Google Scholar
  82. 82.
    takahara and fukuura, ep 0559904 a1 (1993).Google Scholar
  83. 83.
    M. Fujita et al., Titan. Zirconium (Jpn.) 42(4) (1994) 1.Google Scholar
  84. 84.
    K. M. Liu et al., Powder Metallurgy Technology 7(1) (1989) 39.Google Scholar
  85. 85.
    Y. X. Li et al., Rare Metal Materials and Engineering 20(4) (1991) 56.Google Scholar
  86. 86.
    H. S. Tang, Materials Science and Engineering 10(1) (1992) 43.Google Scholar
  87. 87.
    C. R. Zhen, Shanghai Nonferrous Metals 16(5) (1995) 272.Google Scholar
  88. 88.
    S. Ban et al., SAE Trans. J. Mater. Manuf. 104 (1995) 700.Google Scholar
  89. 89.
    G. C. Zhang, Titanium Alloy Messages 3(1997) 3.Google Scholar
  90. 90.
    G. Gioux et al., International Journal of Mechanical Sciences 42 (2000) 1097.Google Scholar
  91. 91.
    J. Baumeister et al., Materials & Design 18(4/6) (1997) 217.Google Scholar
  92. 92.
    S. K. Maiti et al., Acta Mater. 32(11) (1984) 1963.Google Scholar
  93. 93.
    K. Pannkoke et al., in Proceedings of the 29th International Symposium on Automotive Technology and Automation (Florence, Italy, 1996) Vol.1, p. 645.Google Scholar
  94. 94.
    L. Lorenzi et al., in Proceedings of the Applications for Aluminium in Vehicle Design (Detroit, Michigan, USA, 1997) p. 23.Google Scholar
  95. 95.
    T. Morimoto and F. Nakagawa, UK Patent GB 2190417A (1987).Google Scholar
  96. 96.
    T. J. Lu et al., Journal of Applied Physics 85(11) (1999) 7528.Google Scholar
  97. 97.
    Y. C. Liu, Rare Metal Materials and Engineering 5 (1989) 36.Google Scholar
  98. 98.
    M. Naoe, Sumitomo Light Metal Technical Reports 35(3/4) (1994) 105.Google Scholar
  99. 99.
    F. X. Huang et al., Materials Review 11(3) (1997) 18.Google Scholar
  100. 100.
    M. F. Ashby et al., “Metal Foams and Honeycombs Database, Granta Design” (1997).Google Scholar
  101. 101.
    D. Y. Tzou and J. Li, Journal of Composite Materials 29(5) (1995) 634.Google Scholar
  102. 102.
    A. E. Simone and L. J. Gibson, Acta Mater. 46(6) (1998) 2139.Google Scholar
  103. 103.
    Y. Sugimura et al., Acta Mater. 45 (1997) 5345.Google Scholar
  104. 104.
    H. Bart-Smith et al., ibid. 46(10) (1998) 3583.Google Scholar
  105. 105.
    G. X. Yu, Battery Bimonthly 26(2) (1996) 86.Google Scholar
  106. 106.
    Z. H. Jing and Z. Y. Jiang, ibid. 21(1) (1991) 6.Google Scholar
  107. 107.
    J. Chaussard et al., J. Appl. Electrochem. 16 (1986) 803.Google Scholar
  108. 108.
    J. M. Marracino et al., Electrochim. Acta. 32 (1987) 1303.Google Scholar
  109. 109.
    S. Langlois and F. Coeuret, Journal of Applied Electrochemistry 19 (1989) 43.Google Scholar
  110. 110.
    Idem., ibid. 19 (1989) 51.Google Scholar
  111. 111.
    Idem., ibid. 20 (1990) 740.Google Scholar
  112. 112.
    Idem., ibid. 20 (1990) 749.Google Scholar
  113. 113.
    A. Monillet et al., ibid. 23 (1993) 1045.Google Scholar
  114. 114.
    P. Cognet et al., ibid. 26 (1996) 631.Google Scholar
  115. 115.
    K. Saburo et al., Electrochemistry and Industrial Physical-Chemistry 65(1) (1997) 57.Google Scholar
  116. 116.
    U. Atsushi et al., ibid. 66(2) (1998) 194.Google Scholar
  117. 117.
    Elsevier Science Ltd., Met. Powder Rep. (MPR) (1997) 38.Google Scholar
  118. 118.
    P. S. Liu et al., Mater. Sci. Technol. 16(3) (2000) 341.Google Scholar
  119. 119.
    Idem., Science in China E42(3) (1999) 294.Google Scholar
  120. 120.
    Idem., Mater. Sci. Engng. A 268(1) (1999) 208.Google Scholar
  121. 121.
    A. D. Tomsett, Diss. Abstr. Int. 48(11) (1988) N. P.Google Scholar
  122. 122.
    A. V. Barbov et al., Zh. Priki Khim. 68(5) (1995) 915.Google Scholar
  123. 123.
    V. N. Antsiferov et al., ibid. 70(1) (1997) 105.Google Scholar
  124. 124.
    A. N. Pestryakov et al., J. Adv. Mater. 5 (1994) 471.Google Scholar
  125. 125.
    V. N. Antsiferov and A. M. Makarov, Zh. Priki. Khim. 69(5) (1996) 855.Google Scholar
  126. 126.
    V. A. Ametov and A. N. Pestryakov, ibid. 67(2) (1994) 306.Google Scholar
  127. 127.
    J. G. Ibanez et al., in Proceedings of the Electrachemical Technology Applied to Environmental Problems PV 95-12 (Reno, Nevada, USA, 1995) p. 102.Google Scholar
  128. 128.
    J. B. Zeng et al., Powder Metallurgy Technology 10(4) (1992) 282.Google Scholar
  129. 129.
    Y. W. Zou, ibid. 9(4) (1991) 252.Google Scholar
  130. 130.
    W. Thiele, Met. Mater. 6 (1972) 349.Google Scholar
  131. 131.
    L. A. Arbuzova et al., Tsvetn. Met. 2 (1997) 62.Google Scholar
  132. 132.
    A. E. Simone and L. J. Gibson, Materials Science and Engineering A229 (1997) 55.Google Scholar
  133. 133.
    G. N. Karam and L. J. Gibson, Int. J. Solids Structure 32a (1995) 1259.Google Scholar
  134. 134.
    Idem., Ibid. 32b (1995) 1285.Google Scholar
  135. 135.
    J. B. Choi and R. S. Lakes, Cell. Polym. 10(3) (1991) 205.Google Scholar
  136. 136.
    K. Shiozawa et al., J. Soc. Mater. Sci. 41(461) (1992) 246.Google Scholar
  137. 137.
    Y. Suzuki et al., European Patent EP 0424109(1990).Google Scholar
  138. 138.
    D. Mahrus et al., UK patent, GB 2200583A (1988).Google Scholar
  139. 139.
    K. Shiozawa and T. Mizuguchi, J. Soc. Mater. Sci. 39(445) (1990) 1360.Google Scholar
  140. 140.
    Y. Sugimura et al., Acta Materialia 45(12) (1997) 5245.Google Scholar
  141. 141.
    A. M. Harte et al., Advanced Engineering Materials 2(4) (2000) 219.Google Scholar
  142. 142.
    O. B. Olurin et al., Mater. Sci. Engng. A 269(1/2) (2000) 136.Google Scholar
  143. 143.
    O. B. Olurin et al., J. Mater. Sci. 35(5) (2000) 1079.Google Scholar
  144. 144.
    A. G. Evancs et al., Current Opinion in Solid State & Materials Science 3(3) (1998) 288.Google Scholar
  145. 145.
    T. Shibata et al., Vacuum 33(3) (1990) 304.Google Scholar
  146. 146.
    C. P. Chen and R. S. Lakes, J. Mater. Sci. 28(16) (1993) 4288.Google Scholar
  147. 147.
    K. B. Khokonov et al., Teplofiz. Vys. Temp. 33(2) (1995) 325.Google Scholar
  148. 148.
    T. R. Thomas and J. P. S. Badyal, UK Patent, GB 2287720A (1995).Google Scholar
  149. 149.
    K. Shiozawa and T. Mizuguchi, J. Soc. Mater. Sci. 39(445) (1990) 1360.Google Scholar
  150. 150.
    K. Shiozawa et al., ibid. 41(461) (1992) 246.Google Scholar
  151. 151.
    H. Takajo et al., JP 248492 (1994).Google Scholar
  152. 152.
    F. X. Huang et al., Journal of Functional Materials 27(2) (1996) 147.Google Scholar
  153. 153.
    M. Tabei et al., JP 81800 (1996).Google Scholar
  154. 154.
    H. Takajo et al., JP 248492 (1994).Google Scholar
  155. 155.
    X. Q. Yu and D. P. He, Journal of Functional Materials 27(2) (1996) 171.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • P. S. Liu
    • 1
    • 2
  • K. M. Liang
    • 2
  1. 1.Key Laboratory of Beam Technology and Material Modification of Ministry of Education, & Department of Materials Science and EngineeringBeijing Normal UniversityBeijingPeople's Republic of China
  2. 2.Department of Materials Science and EngineeringTsinghua UniversityBeijingPeople's Republic of China

Personalised recommendations