Chromosome Research

, Volume 9, Issue 7, pp 569–584

Arrangements of macro- and microchromosomes in chicken cells

  • Felix A. Habermann
  • Marion Cremer
  • Joachim Walter
  • Gregor Kreth
  • Johann von Hase
  • Karin Bauer
  • Johannes Wienberg
  • Christoph Cremer
  • Thomas Cremer
  • Irina Solovei
Article

Abstract

Arrangements of chromosome territories in nuclei of chicken fibroblasts and neurons were analysed employing multicolour chromosome painting, laser confocal scanning microscopy and three-dimensional (3D) reconstruction. The chicken karyotype consists of 9 pairs of macrochromosomes and 30 pairs of microchromosomes. Although the latter represent only 23% of the chicken genome they contain almost 50% of its genes. We show that territories of microchromosomes in fibroblasts and neurons were clustered within the centre of the nucleus, while territories of the macrochromosomes were preferentially located towards the nuclear periphery. In contrast to these highly consistent radial arrangements, the relative arrangements of macrochromosome territories with respect to each other (side-by-side arrangements) were variable. A stringent radial arrangement of macro- and microchromosomes was found in mitotic cells. Replication labelling studies revealed a pattern of DNA replication similar to mammalian cell nuclei: gene dense, early replicating chromatin mostly represented by microchromosomes, was located within the nuclear interior, surrounded by a rim of late replicating chromatin. These results support the evolutionary conservation of several features of higher-order chromatin organization between mammals and birds despite the differences in their karyotypes.

chicken interphase nuclei chromosome arrangement 3D M-FISH nuclear architecture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajer AS, Molé-Bajer J. (1972) Spindle dynamics and chromosome movements. In: Bourne GH, Danielli JF, eds. International Review of Cytology. New York & London: Academic Press.Google Scholar
  2. Boveri T (1909) Die Blastomerehkerne von Ascaris megalocephala und die Theorie der Chromosomenin-dividualität. Arch Zellforsch 3: 181-268.Google Scholar
  3. Burt DW, Bruley C, Dunn IC et al. (1999) The dynamics of chromosome evolution in birds and mammals. Nature 402: 411-413.Google Scholar
  4. Chaly N, Brown DL (1988) The prometaphase configuration and chromosome order in early mitosis. J Cell Sci 91: 325-335.Google Scholar
  5. Craig JM, Bickmore WA (1994) The distribution of CpG islands in mammalian chromosomes [see comments]. [Published erratum appears in Nat Genet 1994 Aug;7(4):551.] Nat Genet 7: 376-382.Google Scholar
  6. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2: 292-301.Google Scholar
  7. Cremer T, Kreth G, Koester H et al. (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryotic Gene Expression 12: 179-212.Google Scholar
  8. Cremer M, v. Hase J, Volm T et al. (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9: 541-567.Google Scholar
  9. Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145: 1119-1131.Google Scholar
  10. Deloukas P, Schuler GD, Gyapay G et al. (1998) A physical map of 30,000 human genes. Science 282: 744-746.Google Scholar
  11. Dietzel S, Weilandt E, Eils R, Münkel C, Cremer C, Cremer T (1995) Three-dimensional distribution of centromeric or paracentromeric heterochromatin of chromosomes 1, 7, 15 and 17 in human lymphocyte nuclei studied with light microscopic axial tomography. Bioimaging 3: 121-133.Google Scholar
  12. Emmerich P, Loos P, Jauch A et al. (1989) Double in situ hybridization in combination with digital image analysis: a new approach to study interphase chromosome topography. Exp Cell Res 181: 126-140.Google Scholar
  13. Ferreira J, Paolella G, Ramos C, Lamond AI (1997) Spatial organization of large-scale chromatin domains in the nucleus: a magnified view of single chromosome territories. J Cell Biol 139: 1597-1610.Google Scholar
  14. Griffin DK, Habermann F, Masabanda J et al. (1999) Micro-and macrochromosome paints generated by flow cytometry and microdissection: tools for mapping the chicken genome. Cytogenet Cell Genet 87: 278-281.Google Scholar
  15. Hedges SB, Parker PH, Sibley CG, Kumar S (1996) Continental break-up and the ordinal diversification of birds and mammals. Nature 381: 226-229.Google Scholar
  16. Kreth G, Edelmann P, Münkel C, Langowski J, Cremer C (2001) Translocation frequencies for X and Y chromosomes predicted by computer simulations of nuclear structure. Chromosome Structure Function (in press).Google Scholar
  17. Lander ES, Linton LM, Birren B et al. (2001) Initial sequencing and analysis of the human genome. International Human Genome Sequencing Consortium. Nature 409: 860-921.Google Scholar
  18. Leonhardt H, Rahn HP, Weinzierl P et al. (2000) Dynamics of DNA replication factories in living cells. J Cell Biol 149: 271-280.Google Scholar
  19. Lesko SA, Callahan DE, LaVilla ME, Wang ZP, Ts'o PO (1995) The experimental homologous and heterologous separation distance histograms for the centromeres of chromosomes 7, 11, and 17 in interphase human T-lymphocytes. Exp Cell Res 219: 499-506.Google Scholar
  20. Macgregor H, Varley J (1988) Working with Animal Chromosomes. 2nd edn. John Wiley & Sons.Google Scholar
  21. McQueen HA, Fantes J, Cross SH, Clark VH, Archibald AL, Bird AP (1996) CpG islands of chicken are concentrated on microchromosomes. Nat Genet 12: 321-324.Google Scholar
  22. McQueen HA, Siriaco G, Bird AP (1998) Chicken microchromosomes are hyperacetylated, early replicating, and gene rich. Genome Res 8: 621-630.Google Scholar
  23. Nagele R, Freeman T, McMorrow L, Lee HY (1995) Precise spatial positioning of chromosomes during prometaphase: evidence for chromosomal order. Science 270: 1831-1835.Google Scholar
  24. O'Brien SJ, Menotti-Raymond M, Murphy WJ et al. (1999) The promise of comparative genomics in mammals. Science 286: 458-462, 479–481.Google Scholar
  25. O'Keefe RT, henderson SC, Spector DL (1992) Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific alpha-satellite DNA sequences. J Cell Biol 116: 1095-1110.Google Scholar
  26. Östergren G (1945) Transverse equilibria on the spindle. Bot Nat 4: 467-468.Google Scholar
  27. Pettmann B, Louis JC, Sensenbrenner M (1979) Morphological and biochemical maturation of neurones cultured in the absence of glial cells. Nature 281: 378-380.Google Scholar
  28. Pichugin AM, Galkina SA, Potekhin AA, Punina EO, Rautian MS, Rodionov AV (2001) The detection of the size of a smallest chicken (Gallus gallus domesticus) microchromosome by pulsed-field gel electrophoresis (PFGE). Genetika (Russ.) 37: 1-4.Google Scholar
  29. Ponce de Leon FA, Li Y, Weng Z (1992) Early and late replicative chromosomal banding patterns of Gallus domesticus. J Hered 83: 36-42.Google Scholar
  30. Popp S, Scholl HP, Loos P et al. (1990) Distribution of chromosome 18 and X centric heterochromatin in the interphase nucleus of cultured human cells. Exp Cell Res 189: 1-12.Google Scholar
  31. Primmer CR, Raudsepp T, Chowdhary BP, Moller AP, Ellegren H (1997) Low frequency of microsatellites in the avian genome. Genome Res 7: 471-482.Google Scholar
  32. Pyrpasopoulou A, Meier J, Maison C, Simos G, Georgatos SD (1996) The lamin B receptor (LBR) provides essential chromatin docking sites at the nuclear envelope. Embo J 15: 7108-7119.Google Scholar
  33. Rice JC, Allis CD (2001) Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13: 263-273.Google Scholar
  34. Rieder CL, Salmon ED (1994) Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J Cell Biol 124: 223-233.Google Scholar
  35. Sadoni N, Langer S, Fauth C et al. (1999) Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol 146: 1211-1226.Google Scholar
  36. Sadoni N, Sullivan KF, Weinzierl P, Stelzer EH, Zink D (2001) Large-scale chromatin fibers of living cells display a discontinuous functional organization. Chromosoma 110: 39-51.Google Scholar
  37. Schermelleh L, Solovei I, Zink D, Cremer T (2001) Two-colour fluorescence labelling of early and mid-to-late replicating chromatin in living cells. Chromosome Res 9: 77-80.Google Scholar
  38. Schmid M, Enderle E, Schindler D, Schempp W (1989) Chromosome banding and DNA replication patterns in bird karyotypes. Cytogenet Cell Genet 52: 139-146.Google Scholar
  39. Smith J, Burt DW (1998) Parameters of the chicken genome (Gallus gallus). Anim Genet 29: 290-294.Google Scholar
  40. Smith J, Bruley CK, Paton IR et al. (2000) Differences in gene density on chicken macrochromosomes and microchromosomes. Anim Genet 31: 96-103.Google Scholar
  41. Solovei I, Walter J, Cremer M, Habermann F, Schermelleh L, Cremer T (2001) FISH on three-dimensionally preserved nuclei. In: Squire J, Beatty B, Mai S, eds. FISH: A Practical Approach. Oxford: Oxford University Press.Google Scholar
  42. Sun HB, Yokota H (1999) Correlated positioning of homologous chromosomes in daughter fibroblast cells. Chromosome Res 7: 603-610.Google Scholar
  43. Sun HB, Shen J, Yokota H (2000) Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J 79: 184-190.Google Scholar
  44. Telenius H, Pelmear AH, Tunnacliffe A et al. (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4: 257-263.Google Scholar
  45. Wade PA (2001) Methyl CpG binding proteins: coupling chromatin architecture to gene regulation. Oncogene 20: 3166-3173.Google Scholar
  46. White MJ (1961) The chromosomes. In: Methuen Monographs on Biological Subjects. London: Methuen & Co. Ltd.Google Scholar
  47. Zink D, Cremer T, Saffrich R et al. (1998) Structure and dynamics of human interphase chromosome territories in vivo. Hum Genet 102: 241-251.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Felix A. Habermann
    • 1
  • Marion Cremer
    • 1
  • Joachim Walter
    • 1
  • Gregor Kreth
    • 3
  • Johann von Hase
    • 3
  • Karin Bauer
    • 1
  • Johannes Wienberg
    • 1
  • Christoph Cremer
    • 3
  • Thomas Cremer
    • 1
  • Irina Solovei
    • 1
  1. 1.Institute of Anthropology and Human GeneticsUniversity of Munich (LMU)MunichGermany
  2. 2.Chair of Animal BreedingTechnical University of MunichFreising-WeihenstephanGermany
  3. 3.Kirchhoff-Institute of PhysicsUniversity of HeidelbergHeidelbergGermany

Personalised recommendations