Plant Molecular Biology

, Volume 47, Issue 5, pp 677–692

Expression and evolution of functionally distinct haemoglobin genes in plants

  • P.W. Hunt
  • R.A. Watts
  • B. Trevaskis
  • D.J. Llewelyn
  • J. Burnell
  • E.S. Dennis
  • W.J. Peacock


Haemoglobin genes have been found in a number of plant species, but the number of genes known has been too small to allow effective evolutionary inferences. We present nine new non-symbiotic haemoglobin sequences from a range of plants, including class 1 haemoglobins from cotton, Citrus and tomato, class 2 haemoglobins from cotton, tomato, sugar beet and canola and two haemoglobins from the non-vascular plants, Marchantia polymorpha (a liverwort) and Physcomitrella patens (a moss). Our molecular phylogenetic analysis of all currently known non-symbiotic haemoglobin genes and a selection of symbiotic haemoglobins have confirmed the existence of two distinct classes of haemoglobin genes in the dicots. It is likely that all dicots have both class 1 and class 2 non-symbiotic haemoglobin genes whereas in monocots we have detected only class 1 genes. The symbiotic haemoglobins from legumes and Casuarina are related to the class 2 non-symbiotic haemoglobins, whilst the symbiotic haemoglobin from Parasponia groups with the class 1 non-symbiotic genes. Probably, there have been two independent recruitments of symbiotic haemoglobins. Although the functions of the two non-symbiotic haemoglobins remain unknown, their patterns of expression within plants suggest different functions. We examined the expression in transgenic plants of the two non-symbiotic haemoglobins from Arabidopsis using promoter fusions to a GUS reporter gene. The Arabidopsis GLB1 and GLB2 genes are likely to be functionally distinct. The class 2 haemoglobin gene (GLB2) is expressed in the roots, leaves and inflorescence and can be induced in young plants by cytokinin treatment in contrast to the class 1 gene (GLB1) which is active in germinating seedlings and can be induced by hypoxia and increased sucrose supply, but not by cytokinin treatment.

Arabidopsis cytokinin evolution haemoglobin nitrogen-fixing symbiosis reporter-gene expression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyoshi, D.E., Regier, D.A. and Gordon, M.P. 1987. Cytokinin production by Agrobacterium and Pseudomonas spp. J. Bact. 169: 4242–4248.Google Scholar
  2. An, G.H., Watson, B.D. and Chiang, C.C. 1986. Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol. 81: 301–305.Google Scholar
  3. Andersson, C.R., Jensen, E.O., Llewellyn, D.J., Dennis, E.S. and Peacock, W.J. 1996. A new haemoglobin gene from soybean: a role for hemoglobin in all plants. Proc. Natl. Acad. Sci. USA 93: 5682–5687.Google Scholar
  4. Andersson, C.R., Llewellyn, D.J., Peacock, W.J. and Dennis, E.S. 1997. Cell-specific expression of the promoters of two nonlegume hemoglobin genes in a transgenic legume, Lotus corniculatus. Plant Physiol. 113: 45–57.Google Scholar
  5. Appleby, C.A. 1969. Properties of leghaemoglobin in vivo, and its isolation as ferrous oxyleghaemoglobin. Biochim. Biophys. Acta 188: 222–229.Google Scholar
  6. Appleby, C.A. 1992. The origin and functions of haemoglobin in plants. Sci. Prog. 76: 365–398.Google Scholar
  7. Appleby, C.A., Tjepkema, J.D. and Trinick, M.J. 1983. Hemoglobin in a nonleguminous plant, Parasponia: possible genetic origin and function in nitrogen fixation. Science 220: 951–953.Google Scholar
  8. Arredondo Peter, R., Hargrove, M.S., Sarath, G., Moran, J.F., Lohrman, J., Olson, J.S. and Klucas, R.V. 1997. Rice haemoglobins. Gene cloning, analysis, and O2-binding kinetics of a recombinant protein synthesized in Escherichia coli.Plant Physiol. 115: 1259–1266.Google Scholar
  9. Bamberger, E. and Mayer, A.M. 1960. Effect of kinetin on formation of red pigment in seedlings of Amaranthus retroflexus. Science 131: 1094–1095.Google Scholar
  10. Bertell, G. and Eliasson, L. 1992. Cytokinin effects on root growth and possible interactions with ethylene and indole-3-acetic acid. Physiol. Plant. 84: 255–261.Google Scholar
  11. Blaxter, M.L. 1993. Nemoglobins: divergent nematode globins. Parasitol. Today 9: 353–360.Google Scholar
  12. Bogusz, D., Appleby, C.A., Landsmann, J., Dennis, E.S., Trinick, M.J. and Peacock, W.J. 1988. Functioning haemoglobin genes in non-nodulating plants. Nature 331: 178–180.Google Scholar
  13. Bogusz, D., Llewellyn, D.J., Craig, S., Dennis, E.S., Appleby, C.A. and Peacock, W.J. 1990. Nonlegume hemoglobin genes retain organ-specific expression in heterologous transgenic plants. Plant Cell 2: 633–641.Google Scholar
  14. Burr, A.H.J., Hunt, P., Wagar, D.R., de Wilde, S., Blaxter, M.L., van Fleteren, J.R. and Moens, L. 2000. A hemoglobin with an optical function. J. Biol. Chem. 275: 4810.Google Scholar
  15. Chase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., Les, D.H., Mishler, B.D., Duvall, M.R., Price, R.A., Hills, H.G., Qiu, Y.L., Kron, K.A., Rettig, J.H., Conti, E., Palmer, J.D., Manhart, J.R., Sytsma, K.J., Michaels, H.J., Kress, W.J., Karol, K.G., Clark, W.D., Hedren, M., Gaut, B.S., Jansen, R.K., Kim, K.J., Wimpee, C.F., Smith, J.F., Furnier, G.R., Strauss, S.H., Xiang, Q.Y., Plun-kett, G.M., Soltis, P.S., Swensen, S.M., Williams, S.E., Gadek, P.A., Quinn, C.J., Eguiarte, L.E., Golenberg, E., Learn, G.H. Jr., Graham, S.W., Barrett, S.C.H., Dayanandan, S., Albert, V.A., Soltis, P.S., Swensen, S.M¤ Williams, S.E., Gadek, P.A., Quinn, C.J., Eguiarte, L.E., Golenberg, E., Learn, G.H. Jr., Graham, S.W., Barrett, S.C.H., Dayanandan, S. and Albert, V.A. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. MO Bot. Gard. 80: 528–580.Google Scholar
  16. Craig, S. 1992. The GUS reporter gene: application to light and transmission microscopy. In S.R. Gallagher (Ed.), GUS Protocols: Using the GUS gene as a reporter of gene expression, Academic Press, Sydney, pp. 115–124.Google Scholar
  17. Decendit, A., Liu, D., Ouelhazi, L., Doireau, P., Merillon, J.M. and Rideau, M. 1992. Cytokinin-enhanced accumulation of indole alkaloids in Catharanthus roseus cell cultures dash the factors affecting the cytokinin response. Plant Cell Rep. 11: 400–403.Google Scholar
  18. Dehio, C. and de Bruijn, F.J. 1992. The early nodulin gene SrEnod2 from Sesbania rostrata is inducible by cytokinin. Plant J. 2: 117–128.Google Scholar
  19. Dickerson, R.E. and Geis, I. 1983. Hemoglobin: Structure, Function, Evolution and Pathology. Benjamin-Cummings, Menlo Park, USA.Google Scholar
  20. Doyle, J.J. 1994. Phylogeny of the legume family: an approach to understanding the origins of nodulation. Ann. Rev. Ecol. Syst. 25: 325–349.Google Scholar
  21. Doyle, J.J. 1998. Phylogenetic perspectives on nodulation: evolving views of plants and symbiotic bacteria. Trends Plant Sci. 3: 473–478.Google Scholar
  22. Duff, S.M.G., Wittenberg, J.B. and Hill, R.D. 1997. Expression, purification, and properties of recombinant barley (Hordeum sp.) hemoglobin. Optical spectra and reactions with gaseous ligands. J. Biol. Chem. 272: 16746–16752.Google Scholar
  23. Duff, S.M.G., Guy, P.A., Nie Xih, Durnin, D.C., Hill, R.D. and Nie, X.Z. 1998. Haemoglobin expression in germinating barley. Seed Sci. Res. 8: 431–436.Google Scholar
  24. Ellis, M.H., Dennis, E.S. and Peacock, W.J. 1999. Arabidopsis roots and shoots have different mechanisms for hypoxic stress tolerance. Plant Physiol. 119: 57–64.Google Scholar
  25. Fang, Y. and Hirsch, A.M. 1998. Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in transgenic alfalfa. Plant Physiol. 116: 53–68.Google Scholar
  26. Franche, C., Diouf, D., Laplaze, L., Auguy, F., Frutz, T., Rio, M., Duhoux, E. and Bogusz, D. 1998. Soybean (lbc3), Parasponia, and Trema hemoglobin gene promoters retain symbiotic and non-symbiotic specificity in transgenic Casuarinaceae: implications for hemoglobin gene evolution and root nodule symbioses. Mol. Plant-Microbe Interact. 11: 887–894.Google Scholar
  27. Fruhling, M., Roussel, H., Gianinazzi Pearson, V., Puhler, A. and Perlick, A.M. 1997. The Vicia faba leghemoglobin gene VfLb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum.Mol. Plant-Microbe Interact. 10: 124–131.Google Scholar
  28. Gualtieri, G. and Bisseling, T. 2000. The evolution of nodulation. Plant Mol. Biol. 42: 181–194.Google Scholar
  29. Harlow, E. and Lane, D. 1988. Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Plainview, NY.Google Scholar
  30. Harutyunyan, E.H., Safonova, T.N., Kuranova, I.P., Popov, A.N., Teplyakov, A.V., Obmolova, G.V., Rusakov, A.A., Vainshtein, B.K., Dodson, G.G., Wilson, J.C. et al.1995. The structure of deoxy-and oxy-leghaemoglobin from lupin. J. Mol. Biol. 251: 104–115.Google Scholar
  31. Hendriks, T., Scheer, I., Quillet, M.-C., Randoux, B., Delbreil, B., Vasseur, J. and Hilbert, J.-L. 1998. A nonsymbiotic hemoglobin gene is expressed during somatic embryogenesis in Chicorium. Biochim. Biophys. Acta 1443: 193–197.Google Scholar
  32. Hill, R.D. 1998. What are haemoglobins doing in plants? Can. J. Bot. 76: 707–712.Google Scholar
  33. Iwaasa, H., Takagi, T. and Shikama, K. 1989. Protozoan myoglobin from Paramecium caudatum: its unusual amino acid sequence. J. Mol. Biol. 208: 355–358.Google Scholar
  34. Jacobsen Lyon, K., Jensen, E.O., Jorgensen, J.E., Marcker, K.A., Peacock, W.J. and Dennis, E.S. 1995. Symbiotic and nonsymbiotic hemoglobin genes of Casuarina glauca. Plant Cell 7: 213–223.Google Scholar
  35. Jefferson, R.A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.Google Scholar
  36. Jimenez-Zurdo, J.I., Frugier, F., Crespi, M.D. and Kondorosi, A. 2000. Expression profiles of 22 novel molecular markers for organogenetic pathways acting in alfalfa nodule development. Mol. Plant-Microbe Interact. 13: 96–106.Google Scholar
  37. Kortt, A.A., Inglis, A.S., Fleming, A.I. and Appleby, C.A. 1988. Amino acid sequence of hemoglobin I from root nodules of the non-leguminous Casuarina glauca-Frankia symbiosis. FEBS Lett. 231: 341–346.Google Scholar
  38. Kortt, A.A., Trinick, M.J. and Appleby, C.A. 1988. Amino acid sequences of hemoglobins I and II from root nodules of the non-leguminous Parasponia rigida-Rhizobium symbiosis,anda correction of the sequence of hemoglobin I from Parasponia andersonii. Eur. J. Biochem. 175: 141–149.Google Scholar
  39. Kouchi, H., Takane, K., So, R.B., Ladha, J.K. and Reddy, P.M. 1999. Rice ENOD40: isolation and expression analysis in rice and transgenic soybean nodules. Plant J. 18: 121–129.Google Scholar
  40. Kraus, D.W. and Wittenberg, J.B. 1990. Hemoglobins of the Lucina pectinata/bacteria symbiosis. I. Molecular properties, kinetics and equilibria of reactions with ligands. J. Biol. Chem. 265: 16043–16053.Google Scholar
  41. Landsmann, J., Dennis, E.S., Higgins, T.J.V., Appleby, C.A., Kortt, A.A. and Peacock, W.J. 1986. Common evolutionary origin of legume and non-legume plant haemoglobins. Nature 324: 166–168.Google Scholar
  42. Lebioda, L., LaCount, M.W., Zhang, E., Chen, Y.P., Han, K., Whitton, M.M., Lincoln, D.E. and Woodin, S.A. 1999. An enzymatic globin from a marine worm. Nature 401: 445.Google Scholar
  43. Marchfelder, A., Binder, S. and Brennicke, A. 1997. A nodulin-35 homologue is encoded in the Arabidopsis genome. Trends Plant Sci. 2: 167–168.Google Scholar
  44. Mason-Gamer, R.J., Weil, C.F. and Kellogg, E.A. 1998. Granulebound starch synthase: structure, function, and phylogenetic utility. Mol. Biol. Evol. 15: 1658–1673.Google Scholar
  45. Mathesius, U., Charon, C., Rolfe, B.G., Kondorosi, A. and Crespi, M. 2000. Temporal and spatial order of events during the induction of cortical cell divisions in white clover by Rhizobium leguminosarum pv. trifolii inoculation or localized cytokinin addition. Mol. Plant-Microbe Interact. 13: 617–628.Google Scholar
  46. Mathews, S. and Sharrock, R.A. 1996. The phytochrome gene family in grasses (Poaceae): a phylogeny and evidence that grasses have a subset of the loci found in dicot angiosperms. Mol. Biol. Evol. 13: 1141–1154.Google Scholar
  47. Membrillo-Hernandez, J., Coopamah, M.D., Anjum, M.F., Stevanin, T.M., Kelly, A., Hughes, M.N. and Poole, R.K. 1999. The flavohemoglobin of Escherichia coli confers resistance to a nitrosating agent, a ‘nitric oxide releaser’, and paraquat and is essential for transcriptional responses to oxidative stress. J. Biol. Chem. 274: 748–754.Google Scholar
  48. Meyerowitz, E.M. and Somerville, C.R. 1994. Arabidopsis Cold Spring Harbor Monograph Series. Cold Spring Harbor Labora-tory Press, Plainview, NY.Google Scholar
  49. Millar, A. and Dennis, E. 1993. The alcohol dehydrogenase genes of cotton. Plant Mol. Biol. 31: 897–904.Google Scholar
  50. Mohamed Yasseen, Y. and Splittstoesser, W.E. 1995. Somatic embryogenesis from leaf of witloof chicory through suspension culture. Plant Cell Rep. 14: 804–806.Google Scholar
  51. Nie Xih, Hill, R.D. and Nie, X.Z. 1997. Mitochondrial respiration and hemoglobin gene expression in barley aleurone tissue. Plant Physiol. 114: 835–840.Google Scholar
  52. Pathirana, S.M. and Tjepkema, J.D. 1995. Purification of hemoglobin from the actinorhizal root nodules of Myrica gale L. Plant Physiol. 107: 827–831.Google Scholar
  53. Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L. and Bolognesi M 2000. A novel two-over-two α-helical sandwich fold is characteristic of the truncated hemoglobin family. EMBO J. 19: 2424–2434.Google Scholar
  54. Reddy, P.M., Kouchi, H. and Ladha, J.K. 1998. Isolation, analysis and expression of homologues of the soybean early nodulin gene GmENOD93 (GmN93) from rice. Biochim. Biophys. Acta 1443: 386–392.Google Scholar
  55. Reddy, P.M., Aggarwal, R.K., Ramos, M.C., Ladha, J.K., Brar, D.S. and Kouchi, H. 1999. Widespread occurrence of the homologues of the early nodulin (ENOD) genes in Oryza species and related grasses. Biochem. Biophys. Res. Commun. 258: 148–154.Google Scholar
  56. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, PLainview, NY.Google Scholar
  57. Silvester, W.B. and Winship, L.J. 1990. Transient responses of nitrogenase to acetylene and oxygen in actinorhizal nodules and cultured Frankia. Plant Physiol. 92: 480–486.Google Scholar
  58. Soltis, D.E., Soltis, P.S., Morgan, D.R., Swensen, S.M., Mullin, B.C., Dowd, J.M. and Martin, P.G. 1995. Chloroplast gene sequence data suggest a single origin of the predisposition for. symbiotic nitrogen fixation in angiosperms. Proc. Natl. Acad. Sci. USA 92: 2647–2651.Google Scholar
  59. Soltis, P.S., Soltis, D.E. and Chase, M.W. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402: 402–404.Google Scholar
  60. Spooner, D.M. and Sytsma, K.J. 1992. Reexamination of series relationships of Mexican and Central American wild potatoes (Solanum sect. Petota): evidence from chloroplast DNA restriction site variation. Syst. Bot. 17: 432–448.Google Scholar
  61. Strózycki, P.M., Karlowski, W.M., Dessaux, Y., Petit, A. and Legocki, A.B. 2000. Lupine leghemoglobin I: expression in transgenic Lotus and tobacco tissues. Mol. Gen. Genet. 263: 173–82.Google Scholar
  62. Su Wee, Howell, S.H. and Su, W.P. 1995. The effects of cytokinin and light on hypocotyl elongation in Arabidopsis seedlings are independent and additive. Plant Physiol. 108: 1423–1430.Google Scholar
  63. Suharjo, U.K.J. and Tjepkema, J.D. 1995. Occurrence of hemoglobin in the nitrogen-fixing root nodules of Alnus glutinosa. Physiol. Plant. 95: 247–252.Google Scholar
  64. Suzuki, T. and Imai, K. 1998. Evolution of myoglobin. Cell. Mol. Life Sci. 54: 979–1004.Google Scholar
  65. Szabados, L., Ratet, P., Grunenberg, B. and de Bruijn, F.J. 1990. Functional analysis of the Sesbania rostrata leghaemoglobin glb3 gene 5′-upstream region in transgenic Lotus corniculatus and Nicotiana tabacum plants. Plant Cell 2: 973–986.Google Scholar
  66. Takane, K., Tajima, S. and Kouchi, H. 1997. Two distinct uricase II (nodulin 35) genes are differentially expressed in soybean plants. Mol. Plant-Microbe Interact. 10: 735–741.Google Scholar
  67. Taylor, E.R., Nie, X.Z., MacGregor, A.W. and Hill, R.D. 1994. A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Mol. Biol. 24: 853–862.Google Scholar
  68. Tjepkema, J.D. 1983. Haemoglobins in the nitrogen-fixing root nodules of actinorhizal plants. Can. J. Bot. 61: 2924–2929.Google Scholar
  69. Tjepkema, J.D., Schwintzer, C.R. and Monz, C.A. 1988. Time course of acetylene reduction in nodules of five actinorhizal genera. Plant Physiol. 86: 581–583.Google Scholar
  70. Trevaskis, B., Watts, R.A., Andersson, C.R., Llewellyn, D.J., Hargrove, M.S., Olson, J.S., Dennis, E.S. and Peacock, W.J. 1997. Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins. Proc. Natl. Acad. Sci. USA 94: 12230–12234.Google Scholar
  71. Urnes, P. 1965. The crystal-solution problem of sperm whale myoglobin. J. Gen. Physiol. 49(Suppl): 75–103.Google Scholar
  72. Vasudevan, S.G., Armarego, W.L., Shaw, D.C., Lilley, P.E., Dixon, N.E. and Poole, R.K. 1991. Isolation and nucleotide sequence of the hmp gene that encodes a haemoglobin-like protein in Escherichia coli K-12. Mol. Gen. Genet. 226: 49–58.Google Scholar
  73. Wellman, C.H., Gray, J. and Chaloner, W.G. 2000. The microfossil record of early land plants. Phil. Trans. R. Soc. Lond. Ser. B Biol. Sci. 355(1398): 717–732.Google Scholar
  74. White, F.F., Taylor, B.H., Huffman, G.A., Gordon, M.P. and Nester, E.W. 1985. Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J. Bact. 164: 33–44.Google Scholar
  75. Wittenberg, J.B. 1966. The molecular mechanism of hemoglobin-facilitated oxygen diffusion. J. Biol. Chem. 241: 104–114.Google Scholar
  76. Yang, Z. 1994. Estimating the pattern of nucleotide substitution. J. Mol. Evol. 39: 105–111.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • P.W. Hunt
    • 1
  • R.A. Watts
    • 2
  • B. Trevaskis
    • 1
  • D.J. Llewelyn
    • 1
  • J. Burnell
    • 3
  • E.S. Dennis
    • 1
  • W.J. Peacock
    • 1
  1. 1.CSIRO Division of Plant IndustryCanberraAustralia
  2. 2.School of Biochemistry and Molecular BiologyAustralian National UniversityCanberraAustralia
  3. 3.School of Molecular SciencesJames Cook UniversityTownsvilleAustralia

Personalised recommendations