Photosynthetica

, Volume 38, Issue 4, pp 571–579 | Cite as

Postharvest Imaging of Chlorophyll Fluorescence from Lemons Can Be Used to Predict Fruit Quality

  • L. Nedbal
  • J. Soukupová
  • J. Whitmarsh
  • M. Trtílek
Article

Abstract

We demonstrate the feasibility of assaying and predicting post-harvest damage in lemons by monitoring chlorophyll (Chl) fluorescence. Fruit quality was assayed using a commercial instrument that determines photosynthetic performance by imaging Chl fluorescence parameters under different irradiances. Images of Chl fluorescence from individual lemons reveal that photosynthesis is active throughout the post-harvest ripening process. Because photosynthesis is highly sensitive to biotic and abiotic stress, variations in Chl fluorescence parameters over the surface of a lemon fruit can be used to predict areas that will eventually exhibit visible damage. The technique is able to distinguish between mould-infected areas that eventually spread over the surface of the fruit, and damaged areas that do not increase in size during ripening. This study demonstrates the potential for using rapid imaging of Chl fluorescence in post-harvest fruit to develop an automated device that can identify and remove poor quality fruit long before visible damage appears.

Citrus limon mould Penicillium digitatum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, K.D., Staehelin, L.A.: Biochemical characterization of photosystem II antenna polypeptides in grana and stroma membranes of spinach.-Plant Physiol. 100: 1517-1526, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anderson, J.M., Waldron, J.C., Thore, S.W.: Chlorophyll-protein complexes of spinach and barley thylakoids. Spectral characterization of six complexes resolved by an improved electrophoretic procedure.-FEBS Lett. 92: 227-233, 1978.CrossRefGoogle Scholar
  3. Baker, N.R., East, T.M., Long, S.P.: Chilling damage to photosynthesis in young Zea mays. II. Photochemical function of thylakoids in vivo.-J. exp. Bot. 34: 189-197, 1983.CrossRefGoogle Scholar
  4. Balachandran, S., Osmond, C.B., Daley, P.F.: Diagnosis of the earliest strain-specific interactions between tobacco mosaic virus and chloroplasts of tobacco leaves in vivo by means of chlorophyll fluorescence imaging.-Plant Physiol. 104: 1059-1065, 1994.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Balota, M., Lichtenthaler, H.K.: Red chlorophyll fluorescence as an ecophysiological method to assess the behaviour of wheat genotypes under drought and heat.-Cereal Res. Commun. 27: 179-187, 1999.Google Scholar
  6. Beaudry, R.M., Armstrong, P.R., Song, J., Deng, W.: Non-destructive method and apparatus for detection of fruit and vegetable quality.-US Patent 5,822,068, 1998.Google Scholar
  7. Berg, D., Maier, K., Otteken, D., Terjung, F.: Picosecond fluorescence decay studies on water-stressed pea leaves: energy transfer and quenching processes in photosystem 2.-Photosynthetica 34: 97-106, 1997.CrossRefGoogle Scholar
  8. Blackwell, J.R., Gilmour, D.J.: Physiological response of the unicellular green alga Chlorococcum submarinum to rapid changes in salinity.-Arch. Microbiol. 157: 86-91, 1991.Google Scholar
  9. Bolhàr-Nordenkampf, H.R., Lechner, E.G.: Winter stress and chlorophyll fluorescence in Norway spruce (Picea abies, L., Karst.).-In: Lichtenthaler, H.K. (ed.): Applications of Chlorophyll Fluorescence. Pp. 173-180. Kluwer Academic Publ., Dordrecht-Boston-London 1988.Google Scholar
  10. Bose, S.: Chlorophyll fluorescence in green plants and energy transfer pathways in photosynthesis.-Photochem. Photobiol. 36: 725-731, 1982.CrossRefGoogle Scholar
  11. Bowyer, W.J., Ning, L., Daley, L.S., Strobel, G.A., Edwards, G.E., Callis, J.B.: In vivo fluorescence imaging for detection of damage to leaves by fungal phytotoxins.-Spectroscopy 13: 36, 1998.Google Scholar
  12. Briantais, J.-M., Dacosta, J., Goulas, Y., Ducruet, J.-M., Moya, I.: Heat stress induces in leaves an increase of the minimum level of chlorophyll fluorescence, F0: A time-resolved analysis.-Photosynth. Res. 48: 189-196, 1996.CrossRefPubMedGoogle Scholar
  13. Bro, E., Meyer, S., Genty, B.: Heterogeneity of leaf CO2 assimilation during photosynthetic induction.-In: Mathis, P. (ed.): Photosynthesis: from Light to Biosphere. Vol. V. Pp. 607-610. Kluwer Academic Publishers, Dordrecht-Boston-London 1995.Google Scholar
  14. Brown, G.K., Sarig, Y.: Non-destructive Technologies for Quality Evaluation of Fruits and Vegetables.-Pp. 120-147. Amer. Soc. Agr. Eng., St.Joseph 1994.Google Scholar
  15. Carter, G.A., Miller, R.L.: Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands.-Remote Sens. Environ. 50: 295-302, 1994.CrossRefGoogle Scholar
  16. Cerovic, Z.G., Goulas, Y., Gorbunov, M., Briantais, J.-M., Camenen, L., Moya, I.: Fluorosensing of water in plants-diurnal changes of the mean lifetime and yield of chlorophyll fluorescence, measured simultaneously and at distance with a tau-LIDAR and a modified PAM-fluorimeter, in maize, sugar beet, and Kalanchoe.-Remote Sens. Environ. 58: 311-321, 1996.CrossRefGoogle Scholar
  17. Chakir, S., Jensen, M.: How does Lobaria pulmonaria regulate photosystem II during progressive desiccation and osmotic water stress? A chlorophyll fluorescence study at room temperature and at 77 K.-Physiol. Plant. 105: 257-265, 1999.CrossRefGoogle Scholar
  18. Csintalan, Z., Proctor, M.C.F., Tuba, Z.: Chlorophyll fluorescence during drying and rehydration in the mosses Rhytidiadelphus loreus (Hedw.) Warnst., Anomodon viticulosus (Hedw.) Hook. &; Tayl. and Grimmia pulvinata (Hedw.) Sm.-Ann. Bot. 84: 235-244, 1999.CrossRefGoogle Scholar
  19. Daley, P.F.: Chlorophyll fluorescence analysis and imaging in plant stress and disease.-Can. J. Plant Pathol. 17: 167-173, 1995.CrossRefGoogle Scholar
  20. Daley, P.F., Raschke, K., Ball, J.T., Berry, J.A.: Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence.-Plant Physiol. 90: 1233-1238, 1989.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Darr, S.C., Arntzen, C.J.: Reconstitution of the light harvesting chlorophyll a/b pigment-protein complex into developing chloroplast membranes using a dialyzable detergent.-Plant Physiol. 80: 931-937, 1986.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dau, H.: Molecular mechanisms and quantitative models of variable photosystem II fluorescence.-Photochem. Photobiol. 60: 1-23, 1994.CrossRefGoogle Scholar
  23. DeEll, J.R., Prange, R.K., Murr, D.P.: Chlorophyll fluorescence as a potential indicator of controlled-atmosphere disorders in ‘Marshall’ McIntosh apples.-HortScience 30: 1084-1085, 1995.Google Scholar
  24. Duysens, L.N.M., Sweers, H.E.: Mechanism of two photochemical reactions in algae as studied by means of fluorescence.-In: Studies on Microalgae and Photosynthetic Bacteria. Pp. 353-372. University of Tokyo Press, Tokyo 1963.Google Scholar
  25. Endo, T., Schreiber, U., Asada, K.: Suppression of quantum yield of photosystem II by hyperosmotic stress in Chlamydomonas reinhardtii.-Plant Cell Physiol. 36: 1253-1258, 1995.Google Scholar
  26. Gandul-Rojas, B., Cepero, M.R.L., Mínguez-Mosquera, M.I.: Chlorophyll and carotenoid patterns in olive fruits, Olea europaea cv. Arbequina.-J. agr. Food Chem. 47: 2207-2212, 1999.CrossRefGoogle Scholar
  27. Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87-92, 1989.CrossRefGoogle Scholar
  28. Genty, B., Meyer, S.: Quantitative mapping of leaf photosynthesis using chlorophyll fluorescence imaging.-Aust. J. Plant Physiol. 22: 277-284, 1994.CrossRefGoogle Scholar
  29. Gilmore, A.M., Govindjee: How higher plants respond to excess light: Energy dissipation in photosystem II.-In: Singhal, G.S., Renger, G., Irrgang, K.-D., Govindjee (ed.): Concepts in Photobiology: Photosynthesis and Photomorphogenesis. Pp. 513-548. Narosa Publishers, Delhi-Madras-Bombay-Calcuta-London; Kluwer Academic Publ., Boston-Dordrecht-London 1999.CrossRefGoogle Scholar
  30. Govindjee: Sixty-three years since Kautsky: Chlorophyll a fluorescence.-Aust. J. Plant Physiol. 22: 131-160, 1995.CrossRefGoogle Scholar
  31. Gross, J., Flugel, M.: Pigment changes in peel of the ripening banana (Musa cavendishi).-Gartenbauwissenschaft 47: 62-64, 1982.Google Scholar
  32. Havaux, M.: Stress tolerance of photosystem II in vivo. Antagonistic effects of water, heat, and photoinhibition stresses.-Plant Physiol. 100: 424-432, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Havaux, M., Lannoye, R.: Effects of chilling temperatures on prompt and delayed chlorophyll fluorescence in maize and barley leaves.-Photosynthetica 18: 117-127, 1984.Google Scholar
  34. Heisel, F., Sowinska, M., Miehé, J.A., Lang, M., Lichtenthaler, H.K.: Detection of nutrient deficiencies of maize by laser induced fluorescence imaging.-J. Plant Physiol. 148: 622-631, 1996.CrossRefGoogle Scholar
  35. Jagtap, V., Bhargava, S., Streb, P., Feierabend, J.: Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.) Moench.-J. exp. Bot. 49: 1715-1721, 1998.Google Scholar
  36. Jefferies, R.A.: Drought and chlorophyll fluorescence in field-grown potato (Solanum tuberosum).-Physiol. Plant. 90: 93-97, 1994.CrossRefGoogle Scholar
  37. Jimenez, M.S., Gonzalez-Rodriguez, A.M., Morales, D., Cid, M.C., Socorro, A.R., Caballero, M.: Evaluation of chlorophyll fluorescence as a tool for salt stress detection in roses.-Photosynthetica 33: 291-301, 1997.CrossRefGoogle Scholar
  38. Krause, G.H.: Photoinhibition of photosynthesis. An avaluation of damaging and protective mechanisms.-Physiol. Plant. 74: 566-574, 1988.CrossRefGoogle Scholar
  39. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: The basics.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313-349, 1991.CrossRefGoogle Scholar
  40. Lang, M., Lichtenthaler, H.K., Sowinska, M., Heisel, F., Miehé, J.A.: Fluorescence imaging of water and temperature stress in plant leaves.-J. Plant Physiol. 148: 613-621, 1996.CrossRefGoogle Scholar
  41. Lebedev, N.N., Šiffel, P., Pakshina, E.V., Krasnovskiï, A.A.: The effect of acidification on absorption and fluorescence spectra of French bean chloroplasts and the kinetics of pheophytin formation.-Photosynthetica 20: 124-130, 1986.Google Scholar
  42. Lorenzini, G., Guidi, L., Nali, C., Soldatini, G.F.: Quenching analysis in poplar clones exposed to ozone.-Tree Physiol. 19: 607-612, 1999.CrossRefPubMedGoogle Scholar
  43. Malkin, S., Kok, B.: Fluorescence induction studies in isolated chloroplast. I. Number of components involved in the reaction and quantum yields.-Biochim. biophys. Acta 126: 413-432, 1966.CrossRefPubMedGoogle Scholar
  44. Merzlyak, M.N., Gitelson, A.A., Pogosyan, S.I., Lekhimena, L., Chivkunova, O.B.: Light-induced pigment degradation in leaves and ripening fruits studied in situ with reflectance spectroscopy.-Physiol. Plant. 104: 661-667, 1998.CrossRefGoogle Scholar
  45. Meyer, S., Genty, B.: Mapping intercellular CO2 mole fraction (Ci) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging. Significance of Ci estimated from leaf gas exchange.-Plant Physiol. 116: 947-957, 1998.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mínguez-Mosquera, M.I., Gallardo-Guerrero, L.: Disappearance of chlorophylls and carotenoids during the ripening of the olive.-J. Sci. Food Agr. 69: 1-6, 1995.CrossRefGoogle Scholar
  47. Mínguez-Mosquera, M.I., Hornero-Méndez, D.: Formation and transformation of pigments during the fruit ripening of Capsicum annuum cv. Bola and Agridulce.-J. Agr. Food Chem. 42: 38-44, 1994.CrossRefGoogle Scholar
  48. Mott, K.A., Cardon, Z.G., Berry, J.A.: Asymmetric patchy stomatal closure for the two surfaces of Xanthium strumarium L. leaves at low humidity.-Plant Cell Environ. 16: 25-34, 1993.CrossRefGoogle Scholar
  49. Murata, N., Satoh, K.: Absorption and fluorescence emission by intact cells, chloroplasts, and chlorophyll-protein complexes.-In: Govindjee, Amesz, J., Fork, D.C. (ed.): Light Emission by Plants and Bacteria. Pp. 137-159. Academic Press, Orlando-San Diego-New York-Austin-Boston-London-Sydney-Tokyo-Toronto 1986.CrossRefGoogle Scholar
  50. Nauš, J., Kuropatwa, R., Klinkovský, T., Ilík, P., Lattová, J., Pavlová, Z.: Heat injury of barley leaves detected by the chlorophyll fluorescence temperature curve.-Biochim. biophys. Acta 1101: 359-362, 1992.CrossRefGoogle Scholar
  51. Nedbal, L., Masojídek, J., Komenda, J., Prášil, O., Šetlík, I.: Three types of photosystem II photoinactivation. 2. Slow processes.-Photosynth. Res. 24: 89-97, 1990.CrossRefPubMedGoogle Scholar
  52. Nedbal, L., Soukupová, J., Kaftan, D., Whitmarsh, J., Trtílek, M.: Kinetic imaging of chlorophyll fluorescence using modulated light.-Photosynth. Res. 38: in press, 2000.Google Scholar
  53. Ning, L., Edwards, G.E., Strobel, G.A., Daley, L.S., Callis, J.B.: Imaging fluorometer to detect pathological change in plants.-Appl. Spectrosc. 49: 1381-1389, 1995.CrossRefGoogle Scholar
  54. Niyogi, K.K., Björkman, O., Grossman, A.R.: Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching.-Plant Cell 9: 1369-1380, 1997.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Niyogi, K.K., Grossman, A.R., Björkman, O.: Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion.-Plant Cell 10: 1121-1134, 1998.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Osmond, C.B., Kramer, D., Lüttge, U.: Reversible, water stress-induced non-uniform chlorophyll fluorescence quenching in wilting leaves of Potentilla reptans may not be due to patchy stomatal responses.-Plant Biol. 1: 618-624, 1999.CrossRefGoogle Scholar
  57. Oxborough, K., Baker, N.R.: An instrument capable of imaging chlorophyll a fluorescence from intact leaves at very low irradiance and at cellular and subcellular levels of organization.-Plant Cell Environ. 20: 1473-1483, 1997a.CrossRefGoogle Scholar
  58. Oxborough, K., Baker, N.R.: Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-Calculation of qP and Fv′/Fm′ without measuring Fo′.-Photosynth. Res. 54: 135-142, 1997b.CrossRefGoogle Scholar
  59. Peterson, R.B., Aylor, D.E.: Chlorophyll fluorescence induction in leaves of Phaseolus vulgaris infected with bean rust (Uromyces appendiculatus).-Plant Physiol. 108: 163-171, 1995.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Raschke, K., Patzke, J., Daley, P.F., Berry, J.A.: Spatial and temporal heterogeneities of photosynthesis detected through analysis of chlorophyll-fluorescence images of leaves.-In: Baltscheffsky, M. (ed.): Current Research in Photosynthesis. Vol. IV. Pp. 573-578. Kluwer Academic Publ., Dordrecht-Boston-London 1990.Google Scholar
  61. Roggero, J.P., Coen, S., Ragonnet, B.: High-performance liquid-chromatography survey on changes in pigment content in ripening grapes of syrah-an approach to anthocyanin metabolism.-Amer. J. Enol. Viticult. 37: 77-83, 1986.Google Scholar
  62. Satoh, K.: F-695 emission from the purified photosystem II chlorophyll a-protein complex.-FEBS Lett. 110: 53-56, 1980.CrossRefGoogle Scholar
  63. Satoh, K., Butler, W.L.: Low temperature spectral properties of subchloroplasts fraction purified from spinach.-Plant Physiol. 61: 373-379, 1978.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Scholes, J.D., Rolfe, S.A.: Photosynthesis in localized regions of oat leaves infected with crown rust (Puccinia coronata)-Quantitative imaging of chlorophyll fluorescence.-Planta 199: 573-582, 1996.CrossRefGoogle Scholar
  65. Schreiber, U., Schliwa, U., Bilger, W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer.-Photosynth. Res. 10: 51-62, 1986.CrossRefPubMedGoogle Scholar
  66. Seaton, G.G.R., Hurry, V.M., Rohozinski, J.: Novel amplification of non-photochemical chlorophyll fluorescence quenching following viral infection in Chlorella.-FEBS Lett. 389: 319-323, 1996.CrossRefPubMedGoogle Scholar
  67. Siebke, K., Weis, E.: Imaging of chlorophyll-a-fluorescence in leaves: Topography of photosynthetic oscillations in leaves of Glechoma hederacea.-Photosynth. Res. 45: 225-237, 1995.CrossRefPubMedGoogle Scholar
  68. Siefermann-Harms, D., Ninnemann, H.: Differences in acid stability of the chlorophyll-protein complexes in intact thylakoids.-Photobiochem. Photobiophys. 6: 85-91, 1983.Google Scholar
  69. Strand, M., Öquist, G.: Inhibition of photosynthesis by freezing temperatures and high light levels in cold-acclimated seedlings of Scots pine (Pinus sylvestris). I. Effects on the light-limited and light-saturated rates of CO2 assimilation.-Physiol. Plant. 64: 425-430, 1985.CrossRefGoogle Scholar
  70. Tuba, Z.: The changes of the photosynthetic pigment system of two paprika (red pepper) varieties from the fully developed vegetative stage to the ripening of the fruit.-Bot. Közlem. 68: 123-131, 1981.Google Scholar
  71. Yerkes, C.T., Kramer, D.M., Fenton, J.M., Crofts, A.R.: UV-photoinhibition: Studies in vitro and in intact plants.-In: Baltscheffsky, M. (ed.): Current Research in Photosynthesis. Vol. II. Pp. 381-384. Kluwer Academic Publ., Dordrecht-Boston-London 1990.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • L. Nedbal
    • 1
    • 2
  • J. Soukupová
    • 1
    • 3
  • J. Whitmarsh
    • 4
    • 5
  • M. Trtílek
    • 5
  1. 1.Laboratory of Applied Photobiology & Bio-Imaging, Institute of Landscape EcologyAcademy of Science of the Czech RepublicNové HradyCzech Republic
  2. 2.Photosynthesis Research Center, Faculty of Biological SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Photosynthesis Research Center, Faculty of Biological SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic
  4. 4.Department of BiochemistryUniversity of IllinoisUSA
  5. 5.Photosynthesis Research UnitAgricultural Research Service/USDAUrbanaUSA

Personalised recommendations