Theoretical and Mathematical Physics

, Volume 129, Issue 1, pp 1335–1340 | Cite as

A New Integrable Case for the Kirchhoff Equation

  • V. V. Sokolov
Article

Abstract

A new integrable case is found for the Kirchhoff equation. The additional integral of motion is a fourth-degree polynomial, the principal metric is diagonal with the eigenvalues a1 = a2 = 1 and a3 = 2, and the other two metrics are nondiagonal.

Keywords

Integrable Case Kirchhoff Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. A. Steklov, On the Motion of a Rigid Body in a Fluid [in Russian], Press Adolf Darre, Kharkov (1893).Google Scholar
  2. 2.
    V. V. Kozlov, Symmetries, Topology, and Resonances in Hamiltonian Mechanics [in Russian], Udmurdski State Univ., Izhevsk (1995).Google Scholar
  3. 3.
    S. P. Novikov, Russ. Math. Surv., 37, 1 (1982).Google Scholar
  4. 4.
    T. Wolf and A. Brand, The Computer Algebra Package CRACK for Investigating PDEs (http://www.unikoeln. de/REDUCE/3.6/doc/crack/) (1992).Google Scholar
  5. 5.
    A. P. Veselov, Sov. Math. Dokl., 27, 740 (1983).Google Scholar
  6. 6.
    M. Adler and P. van Moerbeke, Commun. Math. Phys., 113, 659 (1988).Google Scholar
  7. 7.
    M. Adler and P. van Moerbeke, Adv. Math. Suppl. Stud., 9, 81 (1986).Google Scholar
  8. 8.
    A. G. Reyman and M. A. Semenov-Tian-Shansky, Commun. Math. Phys., 105, 461 (1986).Google Scholar
  9. 9.
    A. I. Bobenko, A. G. Reyman, and M. A. Semenov-Tian-Shansky, Commun. Math. Phys., 122, 321 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • V. V. Sokolov
    • 1
  1. 1.Center for Nonlinear InvestigationsLandau Institute for Theoretical Physics, RASMoscowRussia

Personalised recommendations