, Volume 38, Issue 4, pp 539–551 | Cite as

Multicolour Fluorescence Imaging of Sugar Beet Leaves with Different Nitrogen Status by Flash Lamp UV-Excitation

  • G. Langsdorf
  • C. Buschmann
  • M. Sowinska
  • F. Babani
  • M. Mokry
  • F. Timmermann
  • H.K. Lichtenthaler


Fluorescence images of leaves of sugar beet plants (Beta vulgaris L. cv. Patricia) grown on an experimental field with different fertilisation doses of nitrogen [0, 3, 6, 9, 12, 15 g(N) m−2] were taken, applying a new multicolour flash-lamp fluorescence imaging system (FL-FIS). Fluorescence was excited by the UV-range (280–400 nm, λmax = 340 nm) of a pulsed Xenon lamp. The images were acquired successively in the four fluorescence bands of leaves near 440, 520, 690, and 740 nm (F440, F520, F690, F740) by means of a CCD-camera. Parallel measurements were performed to characterise the physiological state of the leaves (nitrogen content, invert-sugars, chlorophylls and carotenoids as well as chlorophyll fluorescence induction kinetics and beet yield). The fluorescence images indicated a differential local patchiness across the leaf blade for the four fluorescence bands. The blue (F440) and green fluorescence (F520) were high in the leaf veins, whereas the red (F690) and far-red (F740) chlorophyll (Chl) fluorescences were more pronounced in the intercostal leaf areas. Sugar beet plants with high N supply could be distinguished from beet plants with low N supply by lower values of F440/F690 and F440/F740. Both the blue-green fluorescence and the Chl fluorescence rose at a higher N application. This increase was more pronounced for the Chl fluorescence than for the blue-green one. The results demonstrate that fluorescence ratio imaging of leaves can be applied for a non-destructive monitoring of differences in nitrogen supply. The FL-FIS is a valuable diagnostic tool for screening site-specific differences in N-availability which is required for precision farming.

Beta vulgaris L. blue-green fluorescence chlorophyll fluorescence fluorescence ratios nitrogen nutrition photosynthetic activity protein sugars yield 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Araus, J.L., Amaro, T., Voltas, J., Nakkoul, H., Nachit, M.M.: Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions.-Field Crops Res. 55: 209-223, 1998.CrossRefGoogle Scholar
  2. Babani, F., Lichtenthaler, H.K.: Light-induced and age-dependent development of chloroplasts in etiolated barley leaves as visualized by determination of photosynthetic pigments, CO2 assimilation rates and different kinds of chlorophyll fluorescence ratios.-J. Plant Physiol. 148: 555-566, 1996.CrossRefGoogle Scholar
  3. Baffler, R.: Handbuch der landwirtschaftlichen Versuchs-und Untersuchungsmethodik. Futtermitteluntersuchung. Vol. III.-Pp. 1-4. VDLUFA, Darmstadt 1997a.Google Scholar
  4. Baffler, R.: Handbuch der landwirtschaftlichen Versuchs-und Untersuchungsmethodik. Umweltanalytik. Vol. VII.-Pp. 1-6. VDLUFA, Darmstadt 1997b.Google Scholar
  5. Barósi, A., Kocsányi, L., Várkonyi, S., Richter, P., Csintalan, Z., Szente, K.: Two-wavelength, multipurpose, truly portable chlorophyll fluorometer and its application in field monitoring of phytomediation.-Meas. Sci. Technol. 11: 717-729, 2000.CrossRefGoogle Scholar
  6. Bergmann, W.: Nutritional Disorders of Plants: Development, Visual and Analytical Diagnosis.-G. Fischer, Jena 1992.Google Scholar
  7. Bornscheuer, E.: Zucker-und Futterrüben (Beta vulgaris L.).-In: Oehmichen, J. (ed.): Pflanzenproduktion. Vol. II: Produktionstechnik.-Pp. 385-422. Paul Parey, Berlin 1986.Google Scholar
  8. Bullock, D.G., Anderson, D.S.: Evaluation of the Minolta SPAD-502 chlorophyll meter for nitrogen management in corn.-J. Plant Nutr. 21: 741-755, 1998.CrossRefGoogle Scholar
  9. Buschmann, C.: The characterization of the developing photosynthetic apparatus in greening barley leaves by means of (slow) fluorescence kinetic measurements.-In: Akoyunoglou, G. (ed.): Photosynthesis. Vol. V. Pp. 417-426. Balaban International Science Services, Philadelphia 1981.Google Scholar
  10. Buschmann, C., Langsdorf, G., Lichtenthaler, H.K.: Imaging of the blue, green and red fluorescence emission of plants: an overview.-Photosynthetica 38: 483-492, 2000.CrossRefGoogle Scholar
  11. Buschmann, C., Lichtenthaler, H.K.: Principles and characteristics of multi-colour fluorescence imaging of plants.-J. Plant Physiol. 152: 297-314, 1998.CrossRefGoogle Scholar
  12. Cechin, I.: Photosynthesis and chlorophyll fluorescence in two hybrids of sorghum under different nitrogen and water regimes.-Photosynthetica 35: 233-240, 1998.CrossRefGoogle Scholar
  13. Cerovic, Z.G., Samson, G., Morales, F., Trembley, N., Moya, I.: Ultraviolet-induced fluorescence for plant monitoring: present state and prospects.-Agronomy 19: 543-578, 1999.CrossRefGoogle Scholar
  14. Ciompi, S., Gentili, E., Guidi, L., Soldatini, G.F.: The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower.-Plant Sci. 118: 117-184, 1996.CrossRefGoogle Scholar
  15. Evans, J.R.: Photosynthesis and nitrogen relationships in leaves of C3 plants.-Oecologia 78: 9-19, 1989.CrossRefGoogle Scholar
  16. Filella, I., Serrano, L., Serra, J., Penuelas, J.: Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis.-Crop Sci. 35: 1400-1405, 1995.CrossRefGoogle Scholar
  17. Fracheboud, Y., Haldimann, P., Leipner, J., Stamp, P.: Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.).-J. exp. Bot. 50: 1533-1540, 1999.CrossRefGoogle Scholar
  18. Georgieva, K., Lichtenthaler, H.K.: Photosynthetic activity and acclimation ability of pea plants to low and high temperature treatment as studied by means of chlorophyll fluorescence.-J. Plant Physiol. 155: 416-423, 1999.CrossRefGoogle Scholar
  19. Gitelson, A.A., Buschmann, C., Lichtenthaler, H.K.: The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in plants.-Remote Sens. Envir. 69: 296-302, 1999.CrossRefGoogle Scholar
  20. Hák, R., Rinderle-Zimmer, U., Lichtenthaler, H.K., Nátr, L.: Chlorophyll a fluorescence signatures of nitrogen deficient barley leaves.-Photosynthetica 28: 151-159, 1993.Google Scholar
  21. Heisel, F., Sowinska, M., Eckert, C., Miehé, J.A.: Detection of vegetation stress and nutrient deficiencies by leaf laser-induced fluorescence imaging.-Acta Hort. 496: 245-252, 1999.CrossRefGoogle Scholar
  22. Heisel, F., Sowinska, M., Khalili, E., Eckert, C., Miehé, J.A., Lichtenthaler, H.K.: Laser-induced fluorescence imaging for monitoring nitrogen fertilising treatments of wheat.-SPIE 3059: 10-21, 1997.Google Scholar
  23. Heisel, F., Sowinska, M., Miehé, J.A., Lang, M., Lichtenthaler, H.K.: Detection of nutrient deficiencies of maize by laser induced fluorescence imaging.-J. Plant Physiol. 148: 622-631, 1996.CrossRefGoogle Scholar
  24. Jalinek, H., van der Schoor, R., Frandas, A., van Pijlen, J.G., Bino, R.J.: Chlorophyll fluorescence of Brassica oleracea seeds as a non-destructive marker for seed maturity and seed performance.-Seed Sci. Res. 8: 437-443, 1998.Google Scholar
  25. Johnson, G.A., Mantha, S.V., Day, T.A.: A spectrofluorometric survey of UV-induced blue-green fluorescence in foliage of 35 species.-J. Plant Physiol. 156: 242-252, 2000.CrossRefGoogle Scholar
  26. Khamis, S., Lamaze, T., Lemoine, Y., Foyer, C.: Adaptation of the photosynthetic apparatus in maize leaves as a result of nitrogen limitation. Relationships between electron transport and carbon assimilation.-Plant Physiol. 94: 1436-1443, 1990.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: The basics.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313-349, 1991.CrossRefGoogle Scholar
  28. Lang, M., Lichtenthaler, H.K., Sowinska, M., Heisel, F., Miehé, J.A.: Fluorescence imaging of water and temperature stress in plant leaves.-J. Plant Physiol. 148: 613-621, 1996.CrossRefGoogle Scholar
  29. Lang, M., Lichtenthaler, H.K., Sowinska, M., Summ, P., Heisel, F.: Blue, green, and red fluorescence signatures and images of tobacco leaves.-Bot. Acta 107: 230-236, 1994.CrossRefGoogle Scholar
  30. Lang, M., Stober, F., Lichtenthaler, H.K.: Fluorescence emission spectra of plant leaves and constituents.-Radiat. environ. Biophys. 30: 333-347, 1991.CrossRefPubMedGoogle Scholar
  31. Lichtenthaler, H.K.: Chlorophylls and carotenoids-pigments of photosynthetic biomembranes.-In: Colowick, S.P., Kaplan, N.O. (ed.): Methods in Enzymology. Vol. 148. Pp. 350-382. Academic Press, San Diego-New York-Berkeley-Boston-London-Sydney-Tokyo-Toronto 1987.Google Scholar
  32. Lichtenthaler, H.K., Babani, F., Langsdorf, G., Buschmann, C.: Measurement of differences in red chlorophyll fluorescence and photosynthetic activity between sun and shade leaves by fluorescence imaging.-Photosynthetica 38: 523-531, 2000.CrossRefGoogle Scholar
  33. Lichtenthaler, H.K., Buschmann, C., Döll, M., Fietz, H.-J., Bach, T., Kozel, U., Meier, D., Rahmsdorf, U.: Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves.-Photosynth. Res. 2: 115-141, 1981.CrossRefPubMedGoogle Scholar
  34. Lichtenthaler, H.K., Kuhn, G., Prenzel, U., Buschmann, C., Meier, D.: Adaptation of chloroplast-ultrastructure and of chlorophyll-protein levels to high-light and low-light growth conditions.-Z. Naturforsch. 37c: 464-475, 1982.Google Scholar
  35. Lichtenthaler, H.K., Lang, M., Sowinska, M., Heisel, F., Miehé, J.A.: Detection of vegetation stress via a new high resolution fluorescence imaging system.-J. Plant Physiol. 148: 599-612, 1996.CrossRefGoogle Scholar
  36. Lichtenthaler, H.K., Miehé, J.A.: Fluorescence imaging as a diagnostic tool for plant stress.-Trends Plant Sci. 2: 316-320, 1997.CrossRefGoogle Scholar
  37. Lichtenthaler, H.K., Rinderle, U.: The role of chlorophyll fluorescence in the detection of stress conditions in plants.-CRC crit. Rev. anal. Chem. 19(Suppl. 1): S29-S85, 1988.CrossRefGoogle Scholar
  38. Lichtenthaler, H.K., Schweiger, J.: Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants.-J. Plant Physiol. 152: 272-282, 1998.CrossRefGoogle Scholar
  39. Lima, J.D., Mosquim, P.R., da Matta, F.M.: Leaf gas exchange and chlorophyll fluorescence parameters in Phaseolus vulgaris as affected by nitrogen and phosphorus deficiency.-Photosynthetica 37: 113-121, 1999.CrossRefGoogle Scholar
  40. Ma, B.L., Morrison, M.J., Dwyer, L.M.: Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of maize.-Agron. J. 88: 915-920, 1996.CrossRefGoogle Scholar
  41. Markwell, J., Osterman, J.C., Mitchell, J.L.: Calibration of the Minolta SPAD-502 leaf chlorophyll meter.-Photosynth. Res. 46: 467-472, 1995.CrossRefPubMedGoogle Scholar
  42. Marschner, H.: Mineral Nutrition of Higher Plants.-Academic Press, London 1995.Google Scholar
  43. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence-a practical guide.-J. exp. Bot. 51: 659-668, 2000.CrossRefPubMedGoogle Scholar
  44. Moraghan, J.T.: Sugarbeet canopy type and accumulation of plant nitrogen as delineated by aerial photography and global positioning systems.-Commun. Soil Sci. Plant Anal. 29: 2953-2959, 1998.CrossRefGoogle Scholar
  45. Morales, F., Cerovic, Z.G., Moya, I.: Time-resolved blue-green fluorescence of sugar beet (Beta vulgaris L.) leaves. Spectroscopic evidence for the presence of ferulic acid as the main fluorophore of the epidermis.-Biochim. biophys. Acta 1273: 251-262, 1996.CrossRefGoogle Scholar
  46. Reusch, S.: Entwicklung eines reflexionsoptischen Sensors zur Erfassung der Stickstoffversorgung landwirtschaftlicher Kulturpflanzen.-PhD-Thesis, Kiel 1997.Google Scholar
  47. Richter, M., Goss, R., Wagner, B., Holzwarth, A.R.: Characterization of the fast and slow reversible components of non-photochemical quenching in isolated pea thylakoids by picosecond time-resolved chlorophyll fluorescence.-Biochemistry 38: 12718-12726, 1999.CrossRefPubMedGoogle Scholar
  48. Rosema, A., Snel, J.F.H., Zahn, H., Buurmeijer, W.F., Van Hove, L.W.A.: The relation between laser-induced chlorophyll fluorescence and photosynthesis.-Remote Sens. Environ. 65: 143-154, 1998.CrossRefGoogle Scholar
  49. Röver, A.: Beschreibung wichtiger Streßsituationen während des vegetativen Wachstums der Zuckerrübe.-Zuckerindustrie 123: 683-687, 1998.Google Scholar
  50. Samson, G., Prášil, O., Yaakoubd, B.: Photochemical and thermal phases of chlorophyll a fluorescence.-Photosynthetica 37: 163-182, 1999.CrossRefGoogle Scholar
  51. Schepers, J.S., Blackmer, T.M., Francis, D.D.: Chlorophyll meter method for estimating nitrogen content in plant tissue.-In: Kalra, Y.P. (ed.): Handbook of Reference Methods for Plant Analysis. Pp. 129-135. CRC Press, Boca Raton 1998.Google Scholar
  52. Schweiger, J.: Untersuchungen über die möglichen Beziehungen zwischen Blaugrünfluoreszenz und dem Phenolgehalt der Pflanzen.-Karlsruhe Contrib. Plant Physiol. 34: 1-132, 1999.Google Scholar
  53. Schweiger, J., Lang, M., Lichtenthaler, H.K.: Differences in excitation spectra of leaves between stressed and non-stressed plants.-J. Plant Physiol. 148: 536-547, 1996.CrossRefGoogle Scholar
  54. Šesták, Z., Šiffel, P.: Leaf-age related differences in chlorophyll fluorescence.-Photosynthetica 33: 347-369, 1997.Google Scholar
  55. Shangguan, Z., Shao, M., Dyckmans, J.: Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat.-J. Plant Physiol. 156: 46-51, 2000.CrossRefGoogle Scholar
  56. Sowinska, M., Cunin, B., Deruyver, A., Heisel, F., Miehé, J.A., Langsdorf, G., Lichtenthaler, H.K.: Near-field measurements of vegetation by laser-induced fluorescence imaging.-SPIE 3868: 120-131, 1999.Google Scholar
  57. Sowinska, M., Deckers, T., Eckert, C., Heisel, F., Valcke, R., Miehé, J.A.: Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging.-SPIE 3382: 100-110, 1998.Google Scholar
  58. Stober, F., Lichtenthaler, H.K.: Characterization of the laser-induced blue, green and red fluorescence signatures of leaves of wheat and soybean grown under different irradiance.-Physiol. Plant. 88: 696-704, 1993.CrossRefGoogle Scholar
  59. Strasser, R.J., Srivastava, A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria.-Photochem. Photobiol. 61: 32-42, 1995.CrossRefGoogle Scholar
  60. Strasser, R.J., Tsimilli-Michael, M.: The JIP-test as a tool for the detection and quantification of stress in sustainable agriculture.-In: El Bassam, N., Behl, R.K., Prochnow, B. (ed.): Sustainable Agriculture for Food, Energy and Industry. Pp. 133-139. James &; James, London 1998.Google Scholar
  61. Subhash, N., Wenzel, O., Lichtenthaler, H.K.: Changes in blue-green and chlorophyll fluorescence emission and fluorescence ratios during senescence of tobacco plants.-Remote Sens. Environ. 69: 215-223, 1999.CrossRefGoogle Scholar
  62. Sylvester-Bradley, R., Lord, E., Sparkes, D.L., Scott, R.K., Wiltshire, J.J.J., Orson, J.: An analysis of the potential of precision farming in Northern Europe.-Soil Use Management 15: 1-8, 1999.CrossRefGoogle Scholar
  63. Tyystjärvi, E., Koski, A., Keränen, M., Nevalainen, O.: The Kautsky curve is a built-in barcode.-Biophys. J. 77: 1159-1167, 1999.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Van Gorkom, H.: Fluorescence measurements in the study of photosystem II electron transport.-In: Govindjee, Amesz, J., Fork, D.C. (ed.): Light Emission by Plants and Bacteria. Pp. 267-289. Academic Press, Orlando-San Diego-New York-Austin-Boston-London-Sydney-Toyo-Toronto 1986.CrossRefGoogle Scholar
  65. Vouillot, M.O., Huet, P., Boissard, P.: Early detection of N deficiency in a wheat crop using physiological and radiometric methods.-Agronomy 18: 117-130, 1998.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • G. Langsdorf
    • 1
  • C. Buschmann
    • 2
  • M. Sowinska
    • 3
  • F. Babani
    • 2
  • M. Mokry
    • 3
  • F. Timmermann
    • 1
  • H.K. Lichtenthaler
    • 2
  1. 1.Botanical Institute IIUniversity of KarlsruheKarlsruheGermany
  2. 2.Botanical Institute IIUniversity of KarlsruheKarlsruheGermany
  3. 3.Groupe d'Optique Appliquée (GOA)CNRS, 23Strasbourg Cedex 2France

Personalised recommendations