Biomedical Microdevices

, Volume 3, Issue 4, pp 307–313 | Cite as

Fabrication of Screen-Printed Carbon Electrode Arrays for Sensing Neuronal Messengers

  • Paul M. George
  • Jitendran Muthuswamy
  • John Currie
  • Nitish V. Thakor
  • Makarand Paranjape
Article

Abstract

Deciphering the methods of communication between neurons and ensembles of neurons in the brain is a major area of interest in the field of neuroscience. An array of sensors designed to sense specific neuronal messengers or neurotransmitters should provide a better method to study their spatial and temporal activity across a tissue. Screen-printing is a simple and inexpensive technique for fabricating arrays of sensors that can be used to monitor neurotransmitter activity in the brain. One important neuronal messenger known to actively modulate neuronal excitability is nitric oxide (NO). Carbon has been shown to interact with NO in an oxidation-reduction reaction that produces a current proportional to the amount of NO present. The proposed design uses carbon polymer inks screen printed onto aluminum traces to form the sensors. A thick, photodefineable epoxy resin, known as SU-8, serves as an insulator and a mold for the carbon ink. A potentiostat is used to apply a 900 mV voltage between the carbon sensor and a reference electrode positioned in the bath of the experimental setup. The current produced indicates the concentration of NO in close proximity to the carbon site. The screen-printing technique provides an elegant way to produce an array of individual carbon sensors. The carbon sensor array promises a novel approach to mapping the distribution of neurotransmitters in brain tissue.

screen-printing carbon ink nitric oxide neurotransmitter SU-8 photoresist electrode sensor array 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.A. Blum, B.G. Carkhuff, R.L. Edwards, and R.A. Meyer, IEEE Transactions of Biomedical Engineering 38, 68-74 (1991).Google Scholar
  2. J.R. Brorson, P.T. Schumacker, and H. Zhang, Journal of Neuroscience 19(1), 147-58 (1999).Google Scholar
  3. G.C. Brown, Federation of Biochemical Societies Letters 369, 136-139 (1995).Google Scholar
  4. M. Despont, H. Lorenz, N. Fahrni, J. Brugger, P. Renaud, and P. Vettier, in Proceedings of the IEEE International Workshop on Micro Electro Mechanical Systems (Nagoya, Japan, 1997), 518-522.Google Scholar
  5. K.L. Drake, K.D. Wise, J. Farraye, D.J. Anderson, and S.L. BeMent, IEEE Transactions of Biomedical Engineering 35, 719-732 (1988).Google Scholar
  6. B. Fabre, S. Burlet, R. Cespuglio, and G. Bidan, Journal of Electroanalytical Chemistry 436, 75-83 (1997).Google Scholar
  7. H. Faradji, C. Rousset, S. Gautier-Sauvigne, and R. Cespuglio, in 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology (Lyon, France, 2000), 207-210.Google Scholar
  8. Y. Guo and A.R. Guadalupe, Sensors and Actuators B 46, 213-219 (1998).Google Scholar
  9. K.Y. Lee, N. LaBianca, S.A. Rishton, S. Zolgharnain, J.D. Gelorme, J. Shaw, and T.H.-P. Chang, J. Vac. Sci. Technology B-13(6), 3012-3016 (1995).Google Scholar
  10. Lemon, Methods for Neuronal Recording in Conscious Animals (Wiley, Chichester, 1984).Google Scholar
  11. M. Meyer, P. George, A. Bandyopadhyay, J. Muthuswamy, and N. Thakor, in 2000 World Congress on Medical Physics and Biomedical Engineering and 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Chicago, 2000).Google Scholar
  12. J. Park, P.H. Tran, J.K.T. Chao, R. Ghodadra, R. Rangarajan, and N.V. Thakor, Biosensors and Bioelectronics 13, 1187-1195 (1998).Google Scholar
  13. P. Shen and A.L. Gundlach, Experimental Neurology 160, 317-332 (1999).Google Scholar
  14. M. Shimizu-Sasmata, P. Bosque-Hamilton, P.L. Huang, M.A. Moskowitz, and E.H. Lo, Journal of Neuroscience 18(22), 9564-9571 (1998).Google Scholar
  15. D.J. Strike, G.-C. Fiaccabrino, M. Koudelka-Hep, and N.F. de Rooij, Biomedical Microdevices 2(3), 175-178 (2000).Google Scholar
  16. D.A. Turner, P. Aitken, and G. Somjen, Neuroscience Letters 195, 209-213 (1995).Google Scholar
  17. J. Wang, F. Lu, D. MacDonald, J. Lu, M.E.S. Ozsoz, and K.R. Rogers, Talanta 46, 1405-1412 (1998).Google Scholar
  18. J. Wang, B. Tian, V.B. Valeberes, B. Nascimento, and L. Angnes, Electrochemica Acta 43(23), 349-3465 (1998).Google Scholar
  19. R.S. Yoon, A. Czaya, H.C. Kwan, and M.L.G. Joy, IEEE Transactions of Biomedical Engineering 46(11), 1330-1338 (1999).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Paul M. George
    • 1
  • Jitendran Muthuswamy
    • 2
  • John Currie
    • 3
  • Nitish V. Thakor
    • 1
  • Makarand Paranjape
    • 3
  1. 1.Department of Biomedical EngineeringJohns Hopkins UniversityBaltimore
  2. 2.Department of BioengineeringArizona State UniversityTempe
  3. 3.Department of PhysicsGeorgetown UniversityWashington

Personalised recommendations