Photosynthetica

, Volume 38, Issue 4, pp 531–537

Heterogeneity of Chlorophyll Fluorescence over Thalli of Several Foliose Macrolichens Exposed to Adverse Environmental Factors: Interspecific Differences as Related to Thallus Hydration and High Irradiance

  • M. Barták
  • J. Hájek
  • J. Gloser
Article

Abstract

Spatial heterogeneity of chlorophyll (Chl) fluorescence over thalli of three foliose lichen species was studied using Chl fluorescence imaging (CFI) and slow Chl fluorescence kinetics supplemented with quenching analysis. CFI values indicated species-specific differences in location of the most physiologically active zones within fully hydrated thalli: marginal thallus parts (Hypogymnia physodes), central part and close-to-umbilicus spots (Lasallia pustulata), and irregulary-distributed zones within thallus (Umbilicaria hirsuta). During gradual desiccation of lichen thalli, decrease in Chl fluorescence parameters (FO - minimum Chl fluorescence at point O, FP - maximum Chl fluorescence at P point, Φ2 - effective quantum yield of photochemical energy conversion in photosystem 2) was observed. Under severe desiccation (>85 % of water saturation deficit), substantial thalli parts lost their apparent physiological activity and the resting parts exhibited only a small Chl fluorescence. Distribution of these active patches was identical with the most active areas found under full hydration. Thus spatial heterogeneity of Chl fluorescence in foliose lichens may reflect location of growth zones (pseudomeristems) within thalli and adjacent newly produced biomass. When exposed to high irradiance, fully-hydrated thalli of L. pustulata and U. hirsuta showed either an increase or no change in FO, and a decrease in FP. Distribution of Chl fluorescence after the high irradiance treatment, however, remained the same as before the treatment. After 60 min of recovery in the dark, FO and FP did not recover to initial values, which may indicate that the lichen used underwent a photoinhibition. The CFI method is an effective tool in assessing spatial heterogeneity of physiological activity over lichen thalli exposed to a variety of environmental factors. It may be also used to select a representative area at a lichen thallus before application of single-spot fluorometric techniques in lichens.

chlorophyll fluorescence imaging desiccation high irradiance high light Hypogymnia physodes Lasallia pustulata lichen photosynthetic parameters Umbilicaria hirsuta 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barták, M., Hájek, J., Gloser, J.: Application of fluorometric methods to measurements of lichen photosynthetic responses to changing temperature and thallus hydration.-In: Ecology of Antarctic Coastal Oasis. Proceedings. Pp. 17-26. Valtice 2000a.Google Scholar
  2. Barták, M., Hájek, J., Vráblíková, H., Gloser, J.: Photosynthetic response of lichenized Trebouxia (Umbilicaria decussata (Vill.) Zahrb.) from maritime Antarctica to high light stress.-In: Algae and Extreme Environments. Ecology and Physiology. Abstracts. P. 40. Třeboň 2000b.Google Scholar
  3. Bartošková, H., Komenda, J., Nauš, J.: Functional changes of photosystem II in the moss Rhizomnium punctatum (Hedw.) induced by different rates of dark desiccation.-J. Plant Physiol. 154: 597-604, 1999a.CrossRefGoogle Scholar
  4. Bartošková, H., Nauš, J., Výkruta, M.: The arrangement of chloroplasts in cells influences the reabsorption of chlorophyll fluorescence emmission. The effect of desiccation on the chlorophyll fluorescence spectra of Rihizomnium punctatum leaves.-Photosynth. Res. 62: 251-260, 1999b.CrossRefGoogle Scholar
  5. Büdel, B., Scheidegger, C.: Thallus morphology and anatomy.-In: Nash, T.H., III (ed.): Lichen Biology. Pp. 37-64. Cambridge University Press, Cambridge 1996.Google Scholar
  6. Chakir, S., Jensen, M.: How does Lobaria pulmonaria regulate photo-ystem II during progressive desiccation and osmotic water stress? A chlorophyll fluorescence study at room temperature and at 77K.-Physiol. Plant. 105: 257-265, 1999.CrossRefGoogle Scholar
  7. Gauslaa, Y., Solhaug, K.A.: Differences in the susceptibility to light stress between epiphytic lichens of ancient and young boreal forest stand.-Funct. Ecol. 10: 344-354, 1996.CrossRefGoogle Scholar
  8. Gauslaa, Y., Solhaug, K.A.: Hight-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria — interactions of irradiance, exposure duration and high temperature.-J. exp. Bot. 50: 697-705, 1999.Google Scholar
  9. Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87-92, 1989.CrossRefGoogle Scholar
  10. Honegger, R.: A simple outdoor culturing system for the foliose macrolichen Xanthoria parietina (L.) Th.Fr. and Parmelia sulcata Taylor.-Bot. helv. 103: 223-229, 1993.Google Scholar
  11. Honegger, R.: Morphogenesis.-In: Nash, T.H., III (ed.): Lichen Biology. Pp. 65-87. Cambridge University Press, Cambridge 1996.Google Scholar
  12. Horton, P., Ruban, A.V., Walters, R.G.: Regulation of light harvesting in green plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 655-684, 1996.CrossRefPubMedGoogle Scholar
  13. Jensen, M., Chakir, S., Feige, G.B.: Osmotic and atmospheric dehydration effects in the lichen Hypogymnia physodes, Lobaria pulmonaria, and Peltigeria aphtosa: an in vivo study of the chlorophyll fluorescence induction.-Photosynthetica 37: 393-404, 1999.CrossRefGoogle Scholar
  14. Jensen, M., Siebke, K.: Fluorescence imaging of lichens in the macro scale.-Symbiosis 23: 183-195, 1997.Google Scholar
  15. Kappen, L., Schroeter, B., Green, T.G.A., Seppelt, R.D.: Chlorophyll a fluorescence and CO2 exchange of Umbilicaria aprina under extreme light stress in the cold.-Oecologia 113: 325-331, 1998.CrossRefGoogle Scholar
  16. Krall, J.P., Edwards, G.E.: Relationship between photosystem II activity and CO2 fixation in leaves.-Physiol. Plant. 86: 180-187, 1992.CrossRefGoogle Scholar
  17. Lang, M., Lichtenthaler, H.K., Sowinska, M., Heisel, F., Miehé, J.A., Tomasini, F.: Fluorescence imaging of water and temperature stress in plant leaves.-J. Plant. Physiol. 148: 613-621, 1996.CrossRefGoogle Scholar
  18. Lang, M., Lichtenthaler, H.K., Sowinska, M., Summ, P., Heisel, F.: Blue, green and red fluorescence signatures and images of tobacco leaves.-Bot. Acta 107: 230-236, 1994.CrossRefGoogle Scholar
  19. Lichtenthaler, H.K., Lang, M., Sowinska, M., Summ, P., Heisel, F., Miehé, J.A.: Uptake of the herbicide diuron as visualised by the fluorescence imaging technique.-Bot. Acta 110: 158-163, 1997.CrossRefGoogle Scholar
  20. Lichtenthaler, H.K., Miehé, J.A.: Fluorescence imaging as a diagnostic tool for plant stress.-Trends Plant Sci. 2: 316-320, 1997.CrossRefGoogle Scholar
  21. Meyer, S., Genty, B.: Mapping intercellular CO2 mole fraction (Ci) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging. Significance of Ci estimated from leaf gas exchange.-Plant Physiol. 116: 947-957, 1998.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Meyer, S., Genty, B.: Heterogeneous inhibition of photosynthesis over the leaf surface of Rosa rubiginosa L. during water stress and abscisic acid treatment: induction of a metabolic component by limitation of CO2 diffusion.-Planta 210: 126-131, 1999.CrossRefPubMedGoogle Scholar
  23. Osmond, C.B., Daley, P.F., Badger, M.R., Lüttge, U.: Chlorophyll fluorescence quenching during photosynthetic induction in leaves of Abutilon striatum Dicks. infected with abutilon mosaic virus, observed with a field-portable imaging system.-Bot. Acta 111: 390-397, 1998.CrossRefGoogle Scholar
  24. Osmond, B., Schwartz, O., Gunning, B.: Photoinhibitory printing on leaves, visualised by chlorophyll fluorescence imaging and confocal microscopy, is due to diminished fluorescence from grana.-Aust. J. Plant Physiol. 26: 717-724, 1999.CrossRefGoogle Scholar
  25. Roháček, K., Barták, M.: Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications.-Photosynthetica 37: 339-363, 1999.CrossRefGoogle Scholar
  26. Sass, L., Csintalan, Z., Tuba, Z., Vass, I.: Changes in photosystem II activity during desiccation and rehydration of the desiccation toletant lichen Cladonia convoluta studied by chlorophyll fluorescence.-In: Mathis, P. (ed.): Photosynthesis: from Light to Biosphere. Vol. IV. Pp. 553-556. Kluwer Academic Publ., Dordrcht-Boston-London 1995.Google Scholar
  27. Scheidegger, C., Schroeter, B.: Effects of ozone fumigation on epiphytic macrolichens: ultrastructure, CO2 gas exchange and chlorophyll fluorescence.-Environ. Pollut. 88: 345-354, 1995.CrossRefPubMedGoogle Scholar
  28. Schroeter, B., Schulz, F., Kappen, L.: Hydration-related spatial and temporal variation in photosynthetic activity in Antarctic lichens.-In: Bataglia, V., Valencia, J., Walton, D.W.H. (ed.): Antarctic Communities. Species, Structure and Survival. Pp. 221-225. Cambridge University Press, Cambridge 1997.Google Scholar
  29. Šesták, Z., Šiffel, P.: Leaf-age related differences in chlorophyll fluorescence.-Photosynthetica 33: 347-369, 1997.Google Scholar
  30. Sundberg, B., Campbell, D., Palmqvist, K.: Predicting CO2 gain and photosynthetic light acclimation from fluorescence yield and quenching in cyano-lichens.-Planta 201: 138-145, 1997.CrossRefGoogle Scholar
  31. Takács, Z., Lichtenthaler, H.K., Tuba, Z.: Fluorescence emission spectra of dessication-tolerant crytogamic plants during a rehydration-desiccation cycle.-J. Plant Physiol. 156: 375-379, 2000.CrossRefGoogle Scholar
  32. Valladares, F., Sancho, L.G., Chico, J.M., Manrique, E.: Differences in the photosynethetic utilization of high irradiance by co-occuring lichen and vascular plants in the maritime Antarctica.-Bol. R. Soc. Esp. Hist. nat. Sect. Biol. 93: 119-125, 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • M. Barták
    • 1
  • J. Hájek
    • 2
  • J. Gloser
    • 2
  1. 1.Department of Plant Physiology and AnatomyMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Plant Physiology and AnatomyMasaryk UniversityBrnoCzech Republic

Personalised recommendations