Advertisement

Neurochemical Research

, Volume 26, Issue 8–9, pp 959–969 | Cite as

Purinergic Signalling: ATP Release

  • Philippe Bodin
  • Geoffrey Burnstock
Article

Abstract

Adenosine triphosphate (ATP) has a fundamental intracellular role as the universal source of energy for all living cells. The demonstration of its release into the extracellular space and the identification and localisation of specific receptors on target cells have been essential in establishing, after considerable resistance, its extracellular physiological roles. It is now generally accepted that ATP is a genuine neurotransmitter both in the central and peripheral nervous systems. As such, there are numerous arguments which prove that the release of ATP by nerve terminals is by exocytosis. In some non-neuronal cells, however, recent evidence suggests that ATP release could also be carrier-mediated and would involve ATP-binding cassette proteins (ABC), an ubiquitous family of transport ATPases.

Adenosine triphosphate exocytosis ATP binding cassette proteins purinoceptors neurotransmitter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Fiske, C. H. and Subbarow, Y. 1929. Phosphorus compounds of muscle and liver. Science 70:381–382.Google Scholar
  2. 2.
    Lohmann, K. 1929. Uber die Pyrophosphatfraktion im Muskel. Naturwissenschaften 17:624–625.Google Scholar
  3. 3.
    Sperlágh, B. and Vizi, E. S. 1996. Neuronal synthesis, storage and release of ATP. Semin. Neurosci. 8:175–186.Google Scholar
  4. 4.
    Kalckar, H. M. 1969. Biological Phosphorylations: Development of Concepts. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  5. 5.
    Lippman, F. 1941. Metabolic generation and utilization of phosphate bond energy. Enzymology 1:99.Google Scholar
  6. 6.
    Glynn, I. M. 1968. Membrane adenosine triphosphatase and cation transport. Br. Med. Bull. 24:165–169.Google Scholar
  7. 7.
    Chaudry, I. H. 1982. Does ATP cross the cell plasma membrane. Yale J. Biol. Med. 55:1–10.Google Scholar
  8. 8.
    Drury, A. N. and Szent-Györgyi, A. 1929. The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. J. Physiol. (Lond) 68:213–237.Google Scholar
  9. 9.
    Bennett, D. W. and Drury, A. N. 1931. Further observations relating to the physiological activity of adenine compounds. J. Physiol. (Lond) 72:288–320.Google Scholar
  10. 10.
    Burnstock, G. 1972. Purinergic nerves. Pharmacol. Rev. 24:509–581.Google Scholar
  11. 11.
    Burnstock, G. 1997. The past, present and future of purine nucleotides as signalling molecules. Neuropharmacol. 36:1127–1139.Google Scholar
  12. 12.
    Lindler, F. and Rigler, R. 1931. Uber die Beeinflussung der Weite Der Herzkranzgefasse durch Produkte des Zellkernstoffwechsels. Pflugers Arch. 226:697–708.Google Scholar
  13. 13.
    Hoffman, W. S. 1930. The isolation of crystalline adenine nucleotide from blood. J. Biol. Chem. 63:675.Google Scholar
  14. 14.
    Drury, A. N. 1936. The physiological activity of nucleic acid and its derivatives. Physiol. Rev. 16:292–325.Google Scholar
  15. 15.
    Moir, T. W. and Downs, T. D. 1972. Myocardial reactive hyperemia: Comparative effects of adenosine, ATP, ADP, and AMP. Am. J. Physiol. 222:1386–1390.Google Scholar
  16. 16.
    Burnstock, G. 1978. A basis for distinguishing two types of purinergic receptor. In: Straub, R. W., Bolis, L., eds. Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach. New York: Raven Press. p. 107–118.Google Scholar
  17. 17.
    Abbracchio, M. P. and Burnstock, G. 1994. Purinoceptors: Are there families of P2X and P2Y purinoceptors? Pharmacol. Ther. 64:445–475.Google Scholar
  18. 18.
    Burnstock, G. and Kennedy, C. 1985. Is there a basis for distinguishing two types of P2-purinoceptor? Gen. Pharmacol. 16:433–440.Google Scholar
  19. 19.
    Ralevic, V. and Burnstock, G. 1998. Receptors for purines and pyrimidines. Pharmacol. Rev. 50:413–492.Google Scholar
  20. 20.
    Green, H. N. and Stoner, H. B. 1950. Biological Actions of the Adenine Nucleotides. London: Lewis.Google Scholar
  21. 21.
    Trams, E. J., Kauffman, H., and Burnstock, G. 1980. A proposal for the role of ecto-enzymes and adenylates in traumatic shock. J. Theor. Biol. 87:609–621.Google Scholar
  22. 22.
    Katsuragi, T., Tokunaga, T., Ogawa, S., Soejima, O., Sato C., and Furukawa T. 1991. Existence of ATP-evoked ATP release system in smooth muscles. J. Pharmacol. Exp. Ther. 259:513–518.Google Scholar
  23. 23.
    Bodin, P. and Burnstock, G. 1996. ATP-stimulated release of ATP by human endothelial cells. J. Cardiovasc. Pharmacol. 27:872–875.Google Scholar
  24. 24.
    Vizi, E. S. and Burnstock, G. 1988. Origin of ATP release in the rat vas deferens: Concomitant measurement of [3H]noradrenaline and [14C]ATP. Eur. J. Pharmacol. 158:69–77.Google Scholar
  25. 25.
    Sperlágh, B. and Vizi, E. S. 1991. Effect of presynaptic P2 receptor stimulation on transmitter release. J. Neurochem. 56:1466–1470.Google Scholar
  26. 26.
    Vizi, E. S., Liang, S. D., Sperlágh, B., Kittel, A., and Juranyi, Z. 1997. Studies on the release and extracellular metabolism of endogenous ATP in rat superior cervical ganglion: Support for neurotransmitter role of ATP. Neuroscience 79:893–903.Google Scholar
  27. 27.
    Vizi, E. S., Sperlágh, B., and Baranyi, M. 1992. Evidence that ATP released from the postsynaptic site by noradrenaline, is involved in mechanical responses of guinea-pig vas deferens: Cascade transmission. Neuroscience 50:455–465.Google Scholar
  28. 28.
    Holton, F. A. and Holton, P. 1954. The capillary dilator substances in dry powders of spinal roots: A possible role of adenosine triphosphate in chemical transmission from nerve endings. J. Physiol. (Lond.) 126:124–140.Google Scholar
  29. 29.
    Holton, P. 1959. The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J. Physiol. (Lond.) 145:494–504.Google Scholar
  30. 30.
    Abood, L. G., Koketsu, K., and Miyamoto, S. 1962. Outflux of various phosphates during membranedepolarisation of excitable tissues. Am. J. Physiol. 202:469–474.Google Scholar
  31. 31.
    Burnstock, G., Campbell, G., Bennett, M., and Holman, M. E. 1963. The effects of drugs on the transmission of inhibition from autonomic nerves to the smooth muscle of the guinea pig taenia coli. Biochem. Pharmacol. 12 (Suppl.):134–135.Google Scholar
  32. 32.
    Burnstock, G., Campbell, G., Satchell, D., and Smythe, A. 1970. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by nonadrenergic inhibitory nerves in the gut. Br. J. Pharmacol. 40:668–688.Google Scholar
  33. 33.
    Burnstock, G. 1971. Neural nomenclature. Nature 229:282–283.Google Scholar
  34. 34.
    Burnstock, G. 1976. Do some nerve cells release more than one transmitter? Neuroscience 1:239–248.Google Scholar
  35. 35.
    Su, C., Bevan, J. A., and Burnstock, G. 1971. [3H]adenosine triphosphate: Release during stimulation of enteric nerves. Science 173:337–339.Google Scholar
  36. 36.
    Burnstock, G., Cocks, T., Kasakov, L., and Wong, H. K. 1978. Direct evidence for ATP release from non-adrenergic, noncholinergic (“purinergic”) nerves in the guinea-pig taenia coli and bladder. Eur. J. Pharmacol. 49:145–149.Google Scholar
  37. 37.
    Westfall, D. P., Stitzel, R. E., and Rowe, J. N. 1978. The postjunctional effects and neural release of purine compounds in the guinea-pig vas deferens. Eur. J. Pharmacol. 50:27–38.Google Scholar
  38. 38.
    Sneddon, P. and Burnstock, G. 1984. ATP as a co-transmitter in rat tail artery. Eur. J. Pharmacol. 106:149–152.Google Scholar
  39. 39.
    Sedaa, K. O., Bjur, R. A., Shinozuka, K., and Westfall, D. P. 1990. Nerve and drug-induced release of adenine nucleosides and nucleotides from rabbit aorta. J. Pharmacol. Exp. Ther. 252:1060–1067.Google Scholar
  40. 40.
    Burnstock, G. 1975. Purinergic transmission. In: Iversen, L. I., Iversen, S. D., and Snyder, S. H., eds. Handbook of Psychopharmacology, Vol. 5. New York: Plenum Press. p 131–194.Google Scholar
  41. 41.
    Westfall, D. P., Hogaboom, G. K., Colby, J., O'Donnell, J. P., and Fedan, J. S. 1982. Direct evidence against a role of ATP as the nonadrenergic, noncholinergic inhibitory neurotransmitter in guinea pig taenia coli. Proc. Natl. Acad. Sci. USA 79:7041–7045.Google Scholar
  42. 42.
    Burnstock, G. 1997. History of extracellular nucleotides and their receptors. In: Turner, J. T., Weisman, G., and Fedan, J. S., eds. The P2 Nucleotide Receptors. Totowa, NJ: Humana Press Inc. pp. 3–40.Google Scholar
  43. 43.
    Silinsky, E. M., Gerzanich, V., and Vanner, S. M. 1992. ATP mediates excitatory synaptic transmission in mammalian neurones. Br. J. Pharmacol. 106:762–763.Google Scholar
  44. 44.
    Burnstock, G. 1999. Purinergic cotransmission. Brain. Res. Bull. 50:355–357.Google Scholar
  45. 45.
    Hoyle, C. H. V. 1996. Purinergic cotransmission: Parasympathetic and enteric nerves. Semin. Neuroscience 8:207–215.Google Scholar
  46. 46.
    McConalogue, K. and Furness, J. B. 1994. Gastrointestinal neurotransmitters. Baillieres Clin. Endocrinol. Metab. 8:51–76.Google Scholar
  47. 47.
    White, T. D. 1977. Direct detection of depolarisation-induced release of ATP from a synaptosomal preparation. Nature 267:67–68.Google Scholar
  48. 48.
    Potter, P. and White, T. D. 1980. Release of adenosine 5′-triphosphate from synaptosomes from different regions of rat brain. Neuroscience 5:1351–1356.Google Scholar
  49. 49.
    Edwards, F. A., Gibb, A. J., and Colquhoun, D. 1992. ATP receptor-mediated synaptic currents in the central nervous system. Nature 359:144–147.Google Scholar
  50. 50.
    Sperlágh, B., Kittel, A., Lajtha, A., and Vizi, E. S. 1995. ATP acts as fast neurotransmitter in rat habenula: Neurochemical and enzymecytochemical evidence. Neuroscience 66:915–920.Google Scholar
  51. 51.
    Burnstock, G. 1999. Current status of purinergic signalling in the nervous system. Prog. Brain. Res. 120:3–10.Google Scholar
  52. 52.
    Wu, P. H. and Phillis, J. W. 1978. Distribution and release of adenosine triphosphate in rat brain. Neurochem. Res. 3:563–571.Google Scholar
  53. 53.
    Phillis, J. W. and Wu, P. H. 1981. The role of adenosine and its nucleotides in central synaptic transmission. Prog. Neurobiol. 16:187–239.Google Scholar
  54. 54.
    Sweeney, M. I., White, T. D., and Sawynok, J. 1989. Morphine, capsaicin and K+ release purines from capsaicin-sensitive primary afferent nerve terminals in the spinal cord. J. Pharmacol. Exp. Ther. 248:447–454.Google Scholar
  55. 55.
    Burnstock, G. 1996. A unifying purinergic hypothesis for the initiation of pain. Lancet 347:1604–1605.Google Scholar
  56. 56.
    Silinsky, E. M. and Hubbard, J. I. 1973. Release of ATP from rat motor nerve terminals. Nature 243:404–405.Google Scholar
  57. 57.
    Forrester, T. and Lind, A. R. 1969. Identification of adenosine triphosphate in human plasma and the concentration in the venous effluent of forearm muscles before, during and after sustained contractions. J. Physiol. 204:347–364.Google Scholar
  58. 58.
    Paddle, B. M. and Burnstock, G. 1974. Release of ATP from perfused heart during coronary vasodilatation. Blood Vessels 11:110–119.Google Scholar
  59. 59.
    Detwiler, T. C. and Feinman, R. D. 1973. Kinetics of the thrombin-induced release of adenosine triphosphate by platelets. Comparison with release of calcium. Biochemistry 12:2462–2468.Google Scholar
  60. 60.
    Bergfeld, G. R. and Forrester, T. 1989. Efflux of adenosine triphosphate from human erythrocytes in response to a brief pulse of hypoxia. Proc. Physiol. Soc. 418:88.Google Scholar
  61. 61.
    Maugeri, N., Bermejo, E., and Lazzari, M. A. 1990. Adenosine triphosphate released from human mononuclear cells. Thromb. Res. 59:887–890.Google Scholar
  62. 62.
    Pearson, J. D. and Gordon, J. L. 1979. Vascular endothelial and smooth muscle cells in culture selectively release adenine nucleotides. Nature 281:384–386.Google Scholar
  63. 63.
    Bodin, P., Bailey, D. J., and Burnstock, G. 1991. Increased flow-induced ATP release from isolated vascular endothelial but not smooth muscle cells. Br. J. Pharmacol. 103:1203–1205.Google Scholar
  64. 64.
    Hazama, A., Hayashi, S., and Okada, Y. 1998. Cell surface measurements of ATP release from single pancreatic β cells using a novel biosensor technique. Pflugers Arch. 437:31–35.Google Scholar
  65. 65.
    Cotrina, M. L., Lin, J. H., Alves-Rodrigues, A., Liu, S., Li, J., Azmi-Ghadimi, H., Kang, J., Naus, C. C., and Nedergaard, M. 1998. Connexins regulate calcium signaling by controlling ATP release. Proc. Natl. Acad. Sci. USA 95:15735–15740.Google Scholar
  66. 66.
    Queiroz, G., Meyer, D. K., Meyer, A., Starke, K., and von Kügelgen, I. 1999. A study of the mechanism of the release of ATP from rat cortical astroglial cells evoked by activation of glutamate receptors. Neuroscience 91:1171–1181.Google Scholar
  67. 67.
    Lalevée, N., Rogier, C., Becq, F., and Joffre, M. 1999. Acute effects of adenosine triphosphates, cyclic 3′,5′-adenosine monophosphates, and follicle-stimulating hormone on cytosolic calcium level in cultured immature rat Sertoli cells. Biol. Reprod. 61:343–352.Google Scholar
  68. 68.
    Graff, R. D., Lazarowski, E. R., Banes, A. J., and Lee, G. M. 2000. ATP release by mechanically loaded porcine chondrons in pellet culture. Arthritis Rheum. 43:1571–1579.Google Scholar
  69. 69.
    Gabella, G. and Davis, C. 1998. Distribution of afferent axons in the bladder of rats. J. Neurocytol. 27:141–155.Google Scholar
  70. 70.
    Burnstock, G. 2000. P2X receptors in sensory neurones. Br. J. Anaesth. 84:476–488.Google Scholar
  71. 71.
    Burnstock, G. 1999. Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. J. Anat. 194:335–342.Google Scholar
  72. 72.
    Burnstock, G. 2001. Purine-mediated signalling in pain and visceral perception. Trends. Pharmacol. Sci. (in press).Google Scholar
  73. 73.
    Ferguson, D. R. 1999. Urothelial function. BJU Int. 84:235–242.Google Scholar
  74. 74.
    Cockayne, D. A., Hamilton, S. G., Zhu, Q.-M., Dunn, P. M., Zhong, Y., Novakovic, S., Malmberg, A. B., Cain, G., Berson, A., Kassotakis, L., Hedley, L., Lachnit, W. G., Burnstock, G., McMahon, S. B., and Ford A. P. D. W. 2000. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407:1011–1015.Google Scholar
  75. 75.
    Marra, B. 1993. Intestinal occlusion due to a colonic lipoma. Apropos 2 cases [In Italian]. Minerva Chir. 48:1035–1039.Google Scholar
  76. 76.
    Shellenbarger, T. and Krouse, A. 1994. Treating and preventing kidney stones. Medsurg. Nurs. 3:389–394.Google Scholar
  77. 77.
    Berkley, K. J., Wood, E., Scofield, S. L., and Little, M. 1995. Behavioral responses to uterine or vaginal distension in the rat. Pain 61:121–131.Google Scholar
  78. 78.
    Dik, P., Lock, T. M., Schrier, B. P., Zeijlemaker, B. Y., and Boon, T. A. 1996. Transurethral marsupialization of a medial prostatic cyst in patients with prostatitis-like symptoms. J. Urol. 155:1301–1304.Google Scholar
  79. 79.
    Nicholl, J. P., Ross, B., Milner, P. C., Brazier, J. E., Westlake, L., Kohler, B., Frost, E., Williams, B. T., and Johnson, A. G. 1994. Cost effectiveness of adjuvant bile salt treatment in extracorporeal shock wave lithotripsy for the treatment of gall bladder stones. Gut. 35:1294–1300.Google Scholar
  80. 80.
    Ferguson, D. R., Kennedy, I., and Burton, T. J. 1997. ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes—a possible sensory mechanism? J. Physiol. 505:503–511.Google Scholar
  81. 81.
    Vlaskovska, M., Kasakov, L., Rong, W., Bodin, P., Bardini, M., Cockayne, D. A., Ford, A. P. D. W., and Burnstock, G. 2001. P2X3 knockout mice reveal a major sensory role for urothelially released ATP. J. Neurosci. (in press)Google Scholar
  82. 82.
    Katz, B. 1969. The Release of Neural Transmitter Substances. Liverpool: University Press.Google Scholar
  83. 83.
    De Robertis, E. 1964. Histophysiology of Synapses and Neurosecretion. Oxford, UK: Pergammon.Google Scholar
  84. 84.
    Dowdall, M. J., Boyne, A. F., and Whittaker, V. P. 1974. Adenosine triphosphate. A constituent of cholinergic synaptic vesicles. Biochem. J. 140:1–12.Google Scholar
  85. 85.
    Zimmermann, H. 1982. Co-existence of adenosine 5′-triphosphate and acetylcholine in the electromotor synapse. In: Cuello, A. C., ed. Co-transmission. London: MacMillan Press. pp. 243–259.Google Scholar
  86. 86.
    Zimmermann, H. and Denston, C. R. 1976. Adenosine triphosphate in cholinergic vesicles isolated from the electric organ of Electrophorus electricus. Brain Res. 111:365–376.Google Scholar
  87. 87.
    Chen, T. K., Luo, G., and Ewing, A. G. 1994. Amperometric monitoring of stimulated catecholamine release from rat pheochromocytoma (PC12) cells at the zeptomole level. Anal. Chem. 66:3031–3035.Google Scholar
  88. 88.
    Nagasawa, J. 1977. Exocytosis: The common release mechanism of secretory granules in glandular cells, neurosecretory cells, neurons and paraneurons. Arch. Histol. Jpn. 40 Suppl:31–47.Google Scholar
  89. 89.
    Parnas, I. and Parnas, H. 1999. Different mechanisms control the amount and time course of neurotransmitter release. J. Physiol. (Lond.) 517:629.Google Scholar
  90. 90.
    Sikorski, A. F., Sangerman, J., Goodman, S. R., and Critz, S. D. 2000. Spectrin (βSpllΣ1) is an essential component of synaptic transmission. Brain Res. 852:161–166.Google Scholar
  91. 91.
    White, T. D. 1978. Release of ATP from a synaptosomal preparation by elevated extracellular K+ and by veratridine. J. Neurochem. 30:329–336.Google Scholar
  92. 92.
    Salto, C., Calvet, R., Guitart, X., Solsona, C., and Marsal, J. 1990. Opiates depress ACh and ATP release from cholinergic synaptosomes by blocking calcium uptake. Toxicol. Appl. Pharmacol. 106:20–27.Google Scholar
  93. 93.
    White, T. D. 1984. Characteristics of neuronal release of ATP. Prog. Neuropsychopharmacol. Biol. Psychiatry 8:487–493.Google Scholar
  94. 94.
    Fredholm, B. B. and Hedqvist, P. 1978. Release of 3H-purines from [3H]-adenine labelled rabbit kidney following sympathetic nerve stimulation, and its inhibition by α-adrenoceptor blockage. Br. J. Pharmacol. 64:239–245.Google Scholar
  95. 95.
    Irvin, J. L. and Irvin, E. M. 1954. The interaction of quinacrine with adenine nucleotides. J. Biol. Chem. 210:45–56.Google Scholar
  96. 96.
    Ålund, M. and Olson, L. 1979. Depolarization-induced decreases in fluroescence intensity of gastro-intestinal quinacrine-binding nerves. Brain Res. 166:121–137.Google Scholar
  97. 97.
    White, P. N., Thorne, P. R., Housley, G. D., Mockett, B., Billett, T. E., and Burnstock, G. 1995. Quinacrine staining of marginal cells in the stria vascularis of the guinea-pig cochlea: A possible source of extracellular ATP? Hear. Res. 90:97–105.Google Scholar
  98. 98.
    Olson, L., Ålund, M., and Nordberg, K. A. 1976. Fluorescence-microscopical demonstration of a population of gastrointestinal nerve fibres with a selective affinity for quinacrine. Cell Tissue Res. 171:407–423.Google Scholar
  99. 99.
    Knight, G. E., Hoyle, C. H. V., and Burnstock, G. 1992. Quinacrine-staining of neurones, and activity of purine nucleosides and nucleotides in marine and terrestrial invertebrates from several phyla. Comp. Biochem. Physiol. 102C:305–314.Google Scholar
  100. 100.
    Mitchell, C. H., Carrè, D. A., McGlinn, A. M., Stone, R. A., and Civan, M. M. 1998. A release mechanism for stored ATP in ocular ciliary epithelial cells. Proc. Natl. Acad. Sci. USA 95:7174–7178.Google Scholar
  101. 101.
    Douglas, W. W. and Poisner, A. M. 1966. Evidence that the secreting adrenal chromaffin cell releases catecholamines directly from ATP-rich granules. J. Physiol. (Lond.) 183:236–248.Google Scholar
  102. 102.
    Johnson, R. G. Jr. 1987. Proton pumps and chemiosmotic coupling as a generalized mechanism for neurotransmitter and hormone transport. Ann. NY Acad. Sci. 493:162–177.Google Scholar
  103. 103.
    Silinsky, E. M. 1975. On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals. J. Physiol. 247:145–162.Google Scholar
  104. 104.
    Silinsky, E. M. and Redman, R. S. 1996. Synchronous release of ATP and neurotransmitter within milliseconds of a motor nerve impulse in the frog. J. Physiol. (Lond.) 492:815–822.Google Scholar
  105. 105.
    Lagercrantz, H. and Stjärne, L. 1974. Evidence that most noradrenaline is stored without ATP in sympathetic large dense core nerve vesicles. Nature 249:843–845.Google Scholar
  106. 106.
    Burnstock, G. 1995. Noradrenaline and ATP: Cotransmitters and neuromodulators. J. Physiol. Pharmacol. 46:365–384.Google Scholar
  107. 107.
    Hammond, J. R., MacDonald, W. F., and White, T. D. 1988. Evoked secretion of [3H]noradrenaline and ATP from nerve varicosities isolated from the myenteric plexus of the guinea pig ileum. Can. J. Physiol. Pharmacol. 66:369–375.Google Scholar
  108. 108.
    Kasakov, L., Ellis, J., Kirkpatrick, K., Milner, P., and Burnstock, G. 1988. Direct evidence for concomitant release of noradrenaline, adenosine 5′-triphosphate and neuropeptide Y from sympathetic nerve supplying the guinea-pig vas deferens. J. Auton. Nerv. Syst. 22:75–82.Google Scholar
  109. 109.
    Santos, P. F., Caramelo, O. L., Carvalho, A. P., and Duarte, C. B. 1999. Characterization of ATP release from cultures enriched in cholinergic amacrine-like neurons. J. Neurobiol. 41:340–348.Google Scholar
  110. 110.
    White, T. D. and Leslie, R. A. 1982. Depolarization-induced release of adenosine 5′-triphosphate from isolated varicosities derived from the myenteric plexus of the guinea-pig small intestine. J. Neurosci. 2:206–215.Google Scholar
  111. 111.
    Burnstock, G. 1976. Purinergic receptors. J. Theor. Biol. 62:491–503.Google Scholar
  112. 112.
    Hollins, B. and Ikeda, S. R. 1997. Heterologous expression of a P2x-purinoceptor in rat chromaffin cells detects vesicular ATP release. J. Neurophysiol. 78:3069–3076.Google Scholar
  113. 113.
    Bodin, P. and Burnstock, G. 1998. Increased release of ATP from endothelial cells during acute inflammation. Inflamm. Res. 47:351–354.Google Scholar
  114. 114.
    Bodin, P. and Burnstock, G. 2001. Evidence that release of ATP from endothelial cells during increased shear stress is vesicular. J. Cardiovasc. Pharmacol. (in press).Google Scholar
  115. 115.
    Elgavish, A. and Elgavish, G. A. 1985. Evidence for the presence of an ATP transport system in brush-border membrane vesicles isolated from the kidney cortex. Biochim. Biophys. Acta 812:595–599.Google Scholar
  116. 116.
    Reisin, I. L., Prat, A. G., Abraham, E. H., Amara, J. F., Gregory, R. J., Ausiello, D. A., and Cantiello, H. F. 1994. The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. J. Biol. Chem. 269:20584–20591.Google Scholar
  117. 117.
    Schwiebert, E. M. 1999. ABC transporter-facilitated ATP conductive transport. Am. J. Physiol. 276:C1–C8.Google Scholar
  118. 118.
    Demolombe, S. and Escande, D. 1996. ATP-binding cassette proteins as targets for drug discovery. Trends Pharmacol. Sci. 17:273–275.Google Scholar
  119. 119.
    Higgins, C. F., Gallagher, M. P., Mimmack, M. L., and Pearce, S. R. 1988. A family of closely related ATP-binding subunits from prokaryotic and eukaryotic cells. Bioessays 8:111–116.Google Scholar
  120. 120.
    Saurin, W., Hofnung, M., and Dassa, E. 1999. Getting in or out: Early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. J. Mol. Evol. 48:22–41.Google Scholar
  121. 121.
    Abraham, E. H., Prat, A. G., Gerweck, L., Seneveratne, T., Arceci, R. J., Kramer, R., Guidotti, G., and Cantiello, H. F. 1993. The multidrug resistance (mdr1) gene product functions as an ATP channel. Proc. Natl. Acad. Sci. USA 90:312–316.Google Scholar
  122. 122.
    Schwiebert, E. M., Egan, M. E., Hwang, T. H., Fulmer, S. B., Allen, S. S., Cutting, G. R., and Guggino, W. B. 1995. CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 81:1063–1073.Google Scholar
  123. 123.
    Li, C., Ramjeesingh, M., and Bear, C. E. 1996. Purified cystic fibrosis transmembrane conductance regulator (CFTR) does not function as an ATP channel. J. Biol. Chem. 271:11623–11626.Google Scholar
  124. 124.
    Wang, Y., Roman, R., Lidofsky, S. D., and Fitz, J. G. 1996. Autocrine signaling through ATP release represents a novel mechanism for cell volume regulation. Proc. Natl. Acad. Sci. USA 93:12020–12025.Google Scholar
  125. 125.
    Hazama, A., Fan, H. T., Abdullaev, I., Maeno, E., Tanaka, S., Ando, A. Y., and Okada, Y. 2000. Swelling-activated, cystic fibrosis transmembrane conductance regulator-augmented ATP release and Cl- conductances in murine C127 cells. J. Physiol. (Lond.) 523:1–11.Google Scholar
  126. 126.
    Guidotti, G. 1996. ATP transport and ABC proteins. Chem. Biol. 3:703–706.Google Scholar
  127. 127.
    Sugita, M., Yue, Y., and Foskett, J. K. 1998. CFTR Cl- channel and CFTR-associated ATP channel: Distinct pores regulated by common gates. EMBO J. 17:898–908.Google Scholar
  128. 128.
    Zimmermann, H. and Braun, N. 1999. Ecto-nucleotidases— molecular structures, catalytic properties, and functional roles in the nervous system. Prog. Brain. Res. 120:371–385.Google Scholar
  129. 129.
    Yegutkin, G., Bodin, P., and Burnstock, G. 2000. Effect of shear stress on the release of soluble ecto-enzymes ATPase and 5′-nucleotidase along with endogenous ATP from vascular endothelial cells. Br. J. Pharmacol 129:921–926.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Philippe Bodin
    • 1
  • Geoffrey Burnstock
    • 1
  1. 1.Autonomic Neuroscience Institute, Royal Free and University College School of MedicineUniversity College London, Royal Free CampusLondonUK

Personalised recommendations