Theoretical Foundations of Chemical Engineering

, Volume 35, Issue 5, pp 503–509 | Cite as

Interaction between Copper(II) Oxide and Aqueous Ammonia in the Presence of Ethylenediaminetetraacetic Acid

  • E. Yu. Nevskaya
  • I. G. Gorichev
  • S. B. Safronov
  • B. E. Zaitsev
  • A. M. Kutepov
  • A. D. Izotov


The interaction of copper(II) oxide with aqueous ammonia containing ethylenediaminetetraacetic acid (H4L) is analyzed in terms of formal heterogeneous kinetics and the fractal dimension of the dissolving space. It is shown experimentally that, in the presence of H4L, the dissolution rate of CuO grows with increasing ammonia concentration. At a fixed ammonia concentration, the dissolution rate of CuO passes through a maximum at an H4L concentration of 8 × 10–3mol/l. Two mechanisms of dissolution are suggested, namely, an adsorption and a redox mechanism. The adsorption mechanism involves four intermediate species and implies that the dissolution rate is a fractional rational function of the EDTA concentration. The redox mechanism takes into account the oxide/electrolyte interfacial potential. The role of the CuOHL3–ion is elucidated, and the kinetic parameters of dissolution are derived.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gorichev, I.G., Batrakov, V.V., and Dorofeev, M.V., Effect of the Electrical Double Layer on the Dissolution Kinetics of Copper(II) Oxides, Elektrokhimiya, 1995, vol. 31, no. 3, p. 292.Google Scholar
  2. 2.
    Batrakov, V.V., Gorichev, I.G., and Kipriyanov, N.A., Effect of Electrical Double Layer on the Dissolution Kinetics of Metal Oxides, Elektrokhimiya, 1994, vol. 30, no. 4, p. 444.Google Scholar
  3. 3.
    Nevskaya, E.Yu., Gorichev, I.G., Zaitsev, B.E., and Shaplygin, I.S., Effect of Anions on the Dissolution Rate of Copper(II) Oxides and Hydroxides in Acid Media, Zh. Fiz. Khim., 1992, vol. 66, no. 9, p. 2396.Google Scholar
  4. 4.
    Nevskaya, E.Yu., Zaitsev, B.E., Gorichev, I.G., and Izotov, A.D., Effect of Chelating Agents on the Dissolution Kinetics of Copper(II) Oxides in Acid Media, Zh. Fiz. Khim., 1999, vol. 73, no. 8, p. 1388.Google Scholar
  5. 5.
    Gorichev, I.G., Zenchenko, D.A., Mikhal'chenko, I.S., and Serokhov, V.D., Effect of Complex Formation on the Mechanism of Copper(II) Oxide Dissolution in Solutions of EDTA and Ammonia, Koord. Khim., 1986, vol.12, no. 7, p. 886.Google Scholar
  6. 6.
    Zenchenko, D.A., Gorichev, I.G., Zenchenko, A.D., et al., Mechanism of the Inhibiting Effects of EDTA and DTPA on the Dissolution of Copper(II) Oxides in Acid Media, Zh. Neorg. Khim., 1991, vol. 36, no. 7, p. 1681.Google Scholar
  7. 7.
    Gorichev, I.G., Zaitsev, B.E., Shaplygin, I.S., et al., Activating Effect of Ammonia on the Dissolution of Copper( II) Oxide in Aqueous Solutions of EDTA, Zh. Neorg. Khim., 1992, vol. 37, no. 12, p. 2683.Google Scholar
  8. 8.
    Marczenko, Z., Kolorymetryczne oznaczanie perwiastkow, Warsaw: Naukowo-Techniczne, 1968. Translated under the title Fotometricheskoe opredelenie elementov, Moscow: Mir, 1971.Google Scholar
  9. 9.
    Gorichev, I.G., Izotov, A.D., Gorichev, A.I., et al., Analyzing Dissolution Kinetic Data for Metal Oxides in Terms of Fractal Geometry, Zh. Fiz. Khim., 1999, vol.73, no. 10, p. 1802.Google Scholar
  10. 10.
    Delmon, B., Introduction a la cinetique heterogene, Paris: Technip, 1969. Translated under the title Kinetika geterogennykh reaktsii, Moscow: Mir, 1972.Google Scholar
  11. 11.
    Brown, W.E., Dollimore, D., and Galwey, A.K., Reactions in the Solid State, Amsterdam: Elsevier, 1980. Translated under the title Reaktsii tverdykh tel, Moscow: Mir, 1983.Google Scholar
  12. 12.
    Rozovskii, A.Ya., Geterogennye khimicheskie reaktsii (Heterogeneous Chemical Reactions), Moscow: Nauka, 1980.Google Scholar
  13. 13.
    Dyatlova, N.M., Temkina, V.Ya., and Popov, K.I., Kompleksony i kompleksonaty metallov (Chelating Agents and Metal Chelates), Moscow: Khimiya, 1988.Google Scholar
  14. 14.
    Bezdenezhnykh, A.A., Inzhenernye metody sostavleniya uravnenii skorostei khimicheskikh reaktsii i rascheta kineticheskikh konstant (Engineering Approach to Deriving Reaction Rate Equations and Calculating Kinetic Constants), Leningrad: Khimiya, 1973.Google Scholar
  15. 15.
    Shmid, R. and Sapunov, V.N., Non-formal Kinetics: In Search for Chemical Reaction Pathways, Weinheim: Chemie, 1982. Translated under the title Neformal'naya kinetika, Moscow: Mir, 1985.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • E. Yu. Nevskaya
    • 1
  • I. G. Gorichev
    • 2
  • S. B. Safronov
    • 1
  • B. E. Zaitsev
    • 1
  • A. M. Kutepov
    • 3
  • A. D. Izotov
    • 4
  1. 1.Russian University of Peoples FriendshipMoscowRussia
  2. 2.Moscow State Pedagogical UniversityMoscowRussia
  3. 3.Moscow State University of Ecological EngineeringMoscowRussia
  4. 4.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations