Molecular Biology

, Volume 35, Issue 5, pp 682–690 | Cite as

The Structure and Evolutionary Role of the PenelopeMobile Element in the Drosophila virilisSpecies Group

  • G. T. Lezin
  • K. V. Makarova
  • V. V. Velikodvorskaya
  • E. S. Zelentsova
  • R. R. Kechumyan
  • M. G. Kidwell
  • E. V. Koonin
  • M. B. Evgen'ev


The mobile element Penelopeis activated and mobilizes several other transposons in dysgenic crosses in Drosophila virilis. Its structure proved to be complex and to vary greatly in all examined species of the virilisgroup. Phylogenetic analysis of the reverse transcriptase (RT) domain assigned Penelopeto a new branch, rather than to any known family, of LTR-lacking retroelements. Amino acid sequence analysis showed that the C-terminal domain of the Penelopepolyprotein is an active endonuclease, which is related to intron-encoded endonucleases and to bacterial repair endonuclease UrvC, and may act as an integrase. Retroelements coding for a putative endonuclease that differs from typical integrase have not been known thus far. Phylogenetic analysis divided the Penelopecopies from several virilisspecies into two subfamilies, one including virtually identical full-length copies, and the other comprising highly divergent defective copies. The results suggest both vertical and horizontal transfer of the element. Possibly, Penelopeinvasion recurred during evolution and contributed to genome rearrangement in the virilisspecies. Chromosome aberrations detected in D. virilis, which is now being invaded by Penelope, is direct evidence for this assumption.

mobile genetic element retrotransposon integrase endonuclease evolution invasion Drosophila virilis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patterson, J. and Stone, W., Evolution in the Genus Drosophila, New York: Macmillan, 1952.Google Scholar
  2. 2.
    Spicer, G., Ann. Ent. Soc. Am., 1992, vol. 85, pp. 11–25.Google Scholar
  3. 3.
    Evgen'ev, M.B., Mndzhoyan, E.I., Zelentsova, E.S., et al., Mol. Biol., 1998, vol. 32, pp. 184–192.Google Scholar
  4. 4.
    Gall, J.G. and Atherton, D.D., J. Mol. Biol., 1974, vol. 85, pp. 633–664.Google Scholar
  5. 5.
    Cohen, E. and Bowman, S., Chromosoma, 1979, vol. 73, pp. 327–355.Google Scholar
  6. 6.
    Arkhipova, I., Lyubomirskaya, N., and Ilyin, Y., Retroposons of Drosophila, Austin, Tex.: Landes, 1995.Google Scholar
  7. 7.
    Anxolabéhére, D., Kidwell, M., and Pèriquet, G., Mol. Biol. Evol., 1988, vol. 5, pp. 252–269.Google Scholar
  8. 8.
    Kidwell, M., J. Hered., 1994, vol. 85, pp. 339–346.Google Scholar
  9. 9.
    Evgen'ev, M., Yenikopolov, G., Peunova, N., and Ilyin, Y., Chromosoma, 1982, vol. 85, pp. 375–386.Google Scholar
  10. 10.
    Scheinker, V., Lozovskaya, E., Bishop, J., et al., Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 9615–9619.Google Scholar
  11. 11.
    Petrov, D., Schutzman, J., Hartl, D., and Lozovskaya, E., Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 8050–8054.Google Scholar
  12. 12.
    Evgen'ev, M., Zelentsova, H., Shostak, N., et al., Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 196–201.Google Scholar
  13. 13.
    Vieira, J., Vieira, C.P., Hartl, D.L., and Lozovskaya, E.R., Genet. Res., 1998, vol. 71, pp. 109–117.Google Scholar
  14. 14.
    Kidwell, M., Kidwell, J., and Sved, J., Genetics, 1977, vol. 36, pp. 813–833.Google Scholar
  15. 15.
    Lozovskaya, E., Scheinker, V., and Evgen'ev, M., Genetics, 1990, vol. 126, pp. 619–623.Google Scholar
  16. 16.
    Evgen'ev, M., Zelentsova, H., Mnjoian, L., et al., Chromosoma, 2000, vol. 109, pp. 350–357.Google Scholar
  17. 17.
    Lim, J., Dros. Inf. Serv., 1993, vol. 72, pp. 73–77.Google Scholar
  18. 18.
    Gubenko, I. and Evgen'ev, M., Genetica, 1984, vol. 65, pp. 127–139.Google Scholar
  19. 19.
    Altschul, S., Madden, T., Schaffer, A., et al., Nucleic Acids Res., 1997, vol. 25, pp. 3389–3402.Google Scholar
  20. 20.
    Felsenstein, J., Methods Enzymol., 1996, vol. 266, pp. 418–427.Google Scholar
  21. 21.
    Thompson, J., Gibson, T., Plewniak, F., et al., Nucleic Acids Res., 1997, vol. 25, pp. 4876–4882.Google Scholar
  22. 22.
    Zelentsova, H., Poluectova, H., Mnjoian, L., et al., Chromosoma, 1999, vol. 108, pp. 443–456.Google Scholar
  23. 23.
    Xiong, Y. and Eickbush, T., EMBO J., 1990, vol. 90, pp. 3353–3362.Google Scholar
  24. 24.
    Aravind, L., Walker, D., and Koonin, E., Nucleic Acids Res., 1999, vol. 27, pp. 1223–1242.Google Scholar
  25. 25.
    Malik, H. and Eickbush, T., Genetics, 2000, vol. 145, pp. 193–203.Google Scholar
  26. 26.
    Koonin, E., Mushegian, A., and Bork, P., Trends Genet., 1996, vol. 12, pp. 334–336.Google Scholar
  27. 27.
    Capy, P., Anxolabehere, D., and Langin, T., Trends Genet., 1994, vol. 10, pp. 7–12.Google Scholar
  28. 28.
    Zelentsova, E., Vashakidze, R., Kraev, A., and Evgen'ev, M., Chromosoma, 1986, vol. 93, pp. 469–476.Google Scholar
  29. 29.
    Tsuno, K. and Yamaguchi, O., Jpn. J. Genet., 1991, vol. 66, pp. 49–58.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • G. T. Lezin
    • 1
  • K. V. Makarova
    • 2
  • V. V. Velikodvorskaya
    • 1
  • E. S. Zelentsova
    • 3
  • R. R. Kechumyan
    • 4
  • M. G. Kidwell
    • 4
  • E. V. Koonin
    • 2
  • M. B. Evgen'ev
    • 1
  1. 1.Institute of Cell Biophysics, Russian Academy of Sciences, PushchinoMoscow RegionRussia
  2. 2.National Center of Biotechnological Information, National Institute of HealthBethesda, MdUnited States
  3. 3.Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
  4. 4.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTewsonUnited States

Personalised recommendations