Advertisement

Biochemistry (Moscow)

, Volume 66, Issue 9, pp 973–978 | Cite as

Role of Glutathione in the Response of Escherichia coli to Osmotic Stress

  • G. V. Smirnova
  • T. A. Krasnykh
  • O. N. Oktyabrsky
Article

Abstract

The growth of Escherichia coli mutants deficient in glutathione synthesis (gshA) and in glutathione reductase (gor) was suppressed in medium of elevated osmolarity. A mutant in γ-glutamyl transpeptidase (ggt) displayed better ability for osmoadaptation than the parental strain. The unfavorable effect of the gsh mutation on osmoadaptation of growing E. coli cells was more pronounced at low concentrations of K+ in the medium. An increase in osmolarity caused an increase in the intracellular content of glutathione. Changes in the extracellular glutathione level were biphasic: the glutathione level rapidly decreased during the first stage of the response and increased during the second stage. The changes in glutathione levels suggest that under hyperosmotic shock the glutathione transport from the medium into the cell can contribute to the intracellular glutathione accumulation. Changes in the level of intracellular K+ were similarly biphasic: a rapid increase in the K+ level during the first stage of the response to hyperosmotic shock changed to a gradual decrease during the second stage. In mutant gshA cells adapted to osmotic shock, the intracellular K+ level was markedly higher than in the parental strain cells. The possible role of glutathione in the response of E. coli to osmotic shock is discussed.

Escherichia coli osmotic shock glutathione potassium glutathione oxidoreductase γ-glutamyl transpeptidase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Wood, J. M. (1999) Microbiol.Mol.Biol.Rev., 63, 230–262.PubMedGoogle Scholar
  2. 2.
    Dinnbier, U., Limpinsel, E., Schmid, R., and Bakker, E. P. (1988) Arch.Microbiol., 150, 348–357.PubMedGoogle Scholar
  3. 3.
    Larsen, P. I., Sydnes, L. K., Landfald, B., and Str∅m, A. R. (1987) Arch.Microbiol., 147, 1–7.PubMedGoogle Scholar
  4. 4.
    Munro, G. F., Hercules, K., Morgan, J., and Sauerbier, W. (1972) J.Biol.Chem., 247, 1272–1280.PubMedGoogle Scholar
  5. 5.
    McLaggan, D., Logan, T. M., Lynn, D. G., and Epstein, W. (1990) J.Bacteriol., 172, 3631–3636.PubMedGoogle Scholar
  6. 6.
    Meury, J., and Kepes, A. (1982) EMBO J., 1, 339–343.PubMedGoogle Scholar
  7. 7.
    Smirnova, G. V., Muzyka, N. G., and Oktyabrsky, O. N. (2000) FEMS Microbiol.Lett., 186, 209–213.PubMedGoogle Scholar
  8. 8.
    Demple, B. (1991) Annu.Rev.Genet., 25, 315–337.PubMedGoogle Scholar
  9. 9.
    Smirnova, G. V., Muzyka, N. G., Glukhovchenko, M. N., and Oktyabrsky, O. N. (2000) Free Rad.Biol.Med., 28, 1009–1016.PubMedGoogle Scholar
  10. 10.
    Miller, J. H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor, N. Y.Google Scholar
  11. 11.
    Tietze, F. (1969) Analyt.Biochem., 27, 502–522.PubMedGoogle Scholar
  12. 12.
    Alonso-Moraga, A., Bocanegra, A., Torres, J. M., López-Barea, J., and Pueyo, C. (1987) Mol.Cell.Biochem., 73, 61–68.PubMedGoogle Scholar
  13. 13.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J.Biol.Chem., 193, 265–275.PubMedGoogle Scholar
  14. 14.
    Becker-Hapak, M., and Eisenstark, A. (1995) FEMS Microbiol.Lett., 134, 39–44.PubMedGoogle Scholar
  15. 15.
    Hashimoto, W., Suzuki, H., Yamamoto, K., and Kumagai, H. (1997) Biosci.Biotech.Biochem., 61, 34–39.Google Scholar
  16. 16.
    Owens, R. A., and Hartman, P. E. (1986) J.Bacteriol., 168, 109–114.PubMedGoogle Scholar
  17. 17.
    Ohwada, T., and Sagisaka, S. (1988) Agric.Biol.Chem., 52, 313–319.Google Scholar
  18. 18.
    Oktyabrsky, O. N., and Smirnova, G. V. (1993) Biochem.Mol.Biol.Int., 30, 377–383.PubMedGoogle Scholar
  19. 19.
    Epstein, W., and Schultz, S. G. (1965) J.Gen.Physiol., 49, 221–234.Google Scholar
  20. 20.
    Measures, J. C. (1975) Nature, 257, 398–400.PubMedGoogle Scholar
  21. 21.
    Le Rudulier, D., Strøm, A. R., Dandekar, A. M., Smith, L. T., and Valentine, R. C. (1984) Science, 224, 1064–1068.Google Scholar
  22. 22.
    Tempest, D. W., Meers, J. L., and Brown, C. M. (1970) J.Gen.Microbiol., 64, 171–185.PubMedGoogle Scholar
  23. 23.
    Castle, A. M., Macnab, R. M., and Shulman, R. G. (1986) J.Biol.Chem., 261, 7797–7806.PubMedGoogle Scholar
  24. 24.
    Apontoweil, P., and Berends, W. (1975) Biochim.Biophys.Acta, 399, 1–9.PubMedGoogle Scholar
  25. 25.
    Suzuki, H., Kumagai, H., and Tochikura, T. (1987) J.Bacteriol., 169, 3926–3931.PubMedGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • G. V. Smirnova
    • 1
  • T. A. Krasnykh
    • 1
  • O. N. Oktyabrsky
    • 1
  1. 1.Ural Branch of the Russian Academy of SciencesInstitute of Ecology and Genetics of MicroorganismsPerm'Russia

Personalised recommendations