Theoretical and Mathematical Physics

, Volume 128, Issue 3, pp 1207–1212 | Cite as

Field Theory Method for Reconstructing the Stress Tensor in the Earth with a Movable Core

  • B. V. Levin
  • V. P. Pavlov


We reconstruct the stress tensor in the Earth's crust taking perturbations due to the motion of the Earth's hard core into account. In the first-order approximation, the density and pressure are functions of the total potential of all forces under consideration. We estimate the total free-energy balance and calculate the dependence of the free-energy density on latitude.


Field Theory Stress Tensor Hard Core Total Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. N. Avsyuk, Dokl. Akad. Nauk SSSR, 212, 1103–1105 (1973).Google Scholar
  2. 2.
    Yu. N. Avsyuk, Tidal Forces and Processes in Nature [in Russian], Moscow (1996).Google Scholar
  3. 3.
    Yu. N. Avsyuk, ed., Proc. of Conf.Inner Core 2000” [in Russian], Joint Inst. for Earth Physics, Russ. Acad. Sci., Moscow (2000).Google Scholar
  4. 4.
    J. M. Wahr, J. Geophys. Res. B, 90, 9363–9368 (1985).Google Scholar
  5. 5.
    N. N. Gor'kavyi, V. A. Minin, T. A. Tajdakova, and A. M. Fridman, Astron. Circular, 1540, 35–36 (1989).Google Scholar
  6. 6.
    B. F. Chao and R. S. Gross, Geophys. J. Int., No. 122, 776–783 (1995).Google Scholar
  7. 7.
    B. F. Chao, R. S. Gross, and D. N. Dong, Geophys. J. Int., No. 122, 784–789 (1995).Google Scholar
  8. 8.
    YuN. Avsjuk, B.W. Levin, “Natural hazards and variations of the Earth rotation,” in: Proc. 7th Intern. Conf. HAZARDS-98 (Greece, Crete Island, 1998) (J. Papadopoulos, ed.), Athens (1998), p. 34.Google Scholar
  9. 9.
    B. V. Levin and E. B. Chirkov, Vulkanolog. Seismolog., 6, 65–69 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • B. V. Levin
    • 1
  • V. P. Pavlov
    • 2
  1. 1.Shirshov Oceanology Institute, RASMoscowRussia
  2. 2.Steklov Mathematical Institute, RASMoscowRussia

Personalised recommendations