Journal of Neuro-Oncology

, Volume 53, Issue 2, pp 115–127 | Cite as

Hyaluronate Receptors Mediating Glioma Cell Migration and Proliferation

  • Yasuhiko Akiyama
  • Shin Jung
  • Bodour Salhia
  • Sangpyung Lee
  • Sherrilynn Hubbard
  • Michael Taylor
  • Todd Mainprize
  • Kotaro Akaishi
  • Wouter van Furth
  • James T. Rutka
Article

Abstract

The extracellular matrix (ECM) of the central nervous system (CNS) is enriched in hyaluronate (HA). Ubiquitous receptors for HA are CD44 and the Receptor for HA-Mediated Motility known as RHAMM. In the present study, we have investigated the potential role of CD44 and RHAMM in the migration and proliferation of human astrocytoma cells. HA-receptor expression in brain tumor cell lines and surgical specimens was determined by immunocytochemistry and western blot analyses. The ability of RHAMM to bind ligand was determined through cetylpyridinium chloride (CPC) precipitations of brain tumor lysates in HA-binding assays. The effects of HA, CD44 blocking antibodies, and RHAMM soluble peptide on astrocytoma cell growth and migration was determined using MTT and migration assays. Our results show that the expression of the HA-receptors, CD44, and RHAMM, is virtually ubiquitous amongst glioma cell lines, and glioma tumor specimens. There was a gradient of expression amongst gliomas with high grade gliomas expressing more RHAMM and CD44 than did lower grade lesions or did normal human astrocytes or non-neoplastic specimens of human brain. Specific RHAMM variants of 85- and 58-kDa size were shown to bind avidly to HA following CPC precipitations. RHAMM soluble peptide inhibited glioma cell line proliferation in a dose-dependent fashion. Finally, while anti-CD44 antibodies did not inhibit the migration of human glioma cells, soluble peptides directed at the HA-binding domain of RHAMM inhibited glioma migration both on and off an HA-based ECM. These data support the notion that HA-receptors contribute to brain tumor adhesion, proliferation, and migration, biological features which must be better understood before more effective treatment strategies for these tumors can be found.

hyaluronate CD44 astrocytoma motility migration proliferation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Starkey JR: Cell–matrix interactions during tumor invasion. Cancer Met Rev 9: 113–123, 1990Google Scholar
  2. 2.
    Giancotti FG, Mainiero F: Integrin-mediated adhesion and signaling in tumorigenesis. Biochim Biophys Acta 1198: 47–64, 1994Google Scholar
  3. 3.
    Aznavoorian S, Murphy AN, Stetler-Stevenson WG, Liotta LA: Molecular aspects of tumor cell invasion and metastasis. Cancer 71: 1368–1383, 1993Google Scholar
  4. 4.
    Goebeler M, Kaufmann D, Brocker E-B, Klein CE: Migration of highly aggressive melanoma cells on hyaluronic acid is associated with functional changes, increased turnover and shedding of CD44 receptors. J Cell Sci 109: 1957–1964, 1996Google Scholar
  5. 5.
    Bignami A, Asher R: Some observations on the localization of hyaluronic acid in adult, newborn, and embryonal rat brain. Int J Devel Neurosci 10: 45–57, 1992Google Scholar
  6. 6.
    Underhill C: CD44 The hyaluronan receptor. J Cell Sci 103: 293–298, 1992Google Scholar
  7. 7.
    Zoller M: CD44: Physiological expression of distinct isoforms as evidence for organ specific metastasis formation. J Mol Med 73: 425–438, 1995Google Scholar
  8. 8.
    Kuppner MD, Van Meier EG, Gauthier T, Hamou MF, De Tribolet N: Differential expression of the CD44 molecule in human brain tumors. Int J Cancer 50: 572–577, 1992Google Scholar
  9. 9.
    Okada H, Toshida J, Seo H, Wakabayashi T, Sugita K, Hagiwara M: Anti-(glioma surface antigen) monoclonal antibody G-22 recognizes over-expressed CD44 in glioma cells. Cancer Immunol Immunother 39: 313–317, 1994Google Scholar
  10. 10.
    Knupfer MM, Poppenborg H, Hotfilder M, Kuhnel K, Wolff JEA, Domula M: CD44 expression and hyaluronic acid binding of malignant glioma cells. Clin Exp Metastasis 17: 71–76, 1999Google Scholar
  11. 11.
    Turley EA, Austen L, Vandeligt K, Clary C: Hyaluronan and a cell-associated hyaluronan binding protein regulate the locomotion of ras-transformed cells. J Cell Biol 112: 1041–1047, 1991Google Scholar
  12. 12.
    Savani RC, Wang C, Yang B, Zhang S, Kinsella MG, Wight TN, Stern R, Nance DM, Turley EA: Migration of bovine aortic smooth muscle cells after wounding injury. The role of hyaluronan and RHAMM. J Clin Invest 95(3): 1158–1168, 1995 126Google Scholar
  13. 13.
    Pilarski LM, Masellis-Smith A, Belch AR, Yang B, Savani RC, Turley EA:RHAMM,a receptor for hyaluronan-mediated motility, on normal human lymphocytes, thymocytes and malignantBcells: a mediator in B cellmalignancy? Leuk Lymphoma 14(5–6): 363–374, 1994Google Scholar
  14. 14.
    Pilarski LM, Miszta H, Turley EA: Regulated expression of a receptor for hyaluronan-mediated motility on human thymocytes and T cells. J Immunol 150(10): 4292–4302, 1993Google Scholar
  15. 15.
    Nagy JI, Hacking J, Frankenstein UN, Turley EA: Requirement of the hyaluronan receptor RHAMM in neurite extension and motility as demonstrated in primary neurons and neuronal cell lines. J Neurosci 15(1 Pt 1): 241–252, 1995Google Scholar
  16. 16.
    Hall CL, Wang C, Lange LA, Turley EA: Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity. J Cell Biol 126(2): 575–588, 1994Google Scholar
  17. 17.
    Zang S, Chang MD, Zylka D, Turley S, Harrison R, Turley EA: The hyaluronan receptor RHAMM regulates extracellular regulated kinase. J Biol Chem 273: 11342–11348, 1998Google Scholar
  18. 18.
    Hall CL, Yang B, Yang X, Zhang S, Turley M, Samuel S, Lange LA, Wang C, Curpen GD, Savani RC:Overexpression of the hyaluronan receptor RHAMM is transforming and is also required for H-ras transformation. Cell 82: 17–28, 1995Google Scholar
  19. 19.
    Masellis-Smith A, Belch AR, Mant MJ, Turley EA, Pilarski LM: Hyaluronan-dependent motility of B cells and leukemic plasma cells in blood, but not of bone marrow plasma cells, in mutiple myeloma: alternate use of receptor for hyaluronan-mediated motility(RHAMM) and CD44. Blood 87(5): 1891–1899, 1996Google Scholar
  20. 20.
    Teder P, Bergh J, Heldin P: Functional hyaluronan receptors are expressed on a squamous cell lung carcinoma cell line but not on other lung carcinoma cell lines. Cancer Res 55(17): 3908–3914, 1995Google Scholar
  21. 21.
    Yamada Y, Itano N, Narimatsu H, Kudo T, Hirohashi S, Ochiai A, Niimi A, Ueda M, Kimata K: Receptor for hyaluronan-mediated motility and CD44 expression in colon cancer assessed by quantitative analysis using realtime reverse transcriptase polymerase chain reaction. Jpn J Cancer Res 90: 987–992, 1999Google Scholar
  22. 22.
    Chao C, Lotz MM, Clarke AC, Mercurio AM: A function of the integrin a6b4 in the invasive properties of colorectal carcinoma cells. Cancer Res 56: 4811–4819, 1996Google Scholar
  23. 23.
    Ropponen K, Tammi M, Parkkinen J, Eskelinen A, Tammi R, Lipponen P, Agren U, Alhava E, Kosma V-M: Tumor cellassociated hyaluronan as an unfavorable prognostic factor in colorectal cancer. Cancer Res 58: 342–347, 1998Google Scholar
  24. 24.
    Afamann V, Dern HF, Elsasser HP: Differential expression of the hyaluronan receptors CD44 and RHAMM in human pancreatic cancer cells. Clin Cancer Res 2: 1607–1618, 1996Google Scholar
  25. 25.
    Crainie M, Belch AR, Mant MJ, Pilarski LM: Overexpression of the receptor for hyaluronan-mediate motility (RHAMM) characterizes the malignant clone in multiple myeloma: identification of three distinct RHAMM variants. Blood 93: 1684, 1999Google Scholar
  26. 26.
    Mohapatra S, Yang X, Wright JA, Turley EA, Greenberg AH: Soluble hyaluronan receptor RHAMM induces mitotic arrest by suppressing Cdc2 and cyclin B1 expression. J Exp Med 183(4): 1663–1668, 1996Google Scholar
  27. 27.
    Trowbridge IS, Lesley J, Schulte R, Hyman R, Trotter J: Biochemical characterization and cellular distribution of a polymorphic, murine cell-surface glycoprotein expressed on lymphoid tissue. Immunogenetics 15: 299–312, 1982Google Scholar
  28. 28.
    Sleeman JP, Kondo K, Ponta H, Herrlich P: Variant exon v6 and v7 together expand the repertoire of glycosaminoglycans bound by CD44. J Biol Chem 272: 31837–31844, 1997Google Scholar
  29. 29.
    Mossman T: Rapid colorimetric assay for cellular growth and survival. Application to proliferation and cytotoxicity assays. J Immunol Meth 65: 55–63, 1983Google Scholar
  30. 30.
    Apodaca G, Rutka JT, Bouhana K, Berens ME, Giblin JR, Rosenblum ML, McKerrow JH, Banda MJ: Expression of metalloproteinases and metalloproteinase inhibitors by fetal astrocytes and glioma cells. Cancer Res 50: 5893–5902, 1990Google Scholar
  31. 31.
    Berens ME, Rutka JT, Rosenblum ML: Brain tumor epidemiology, growth and invasion. Neurosurgery Clinics of North America 1: 1–18, 1991Google Scholar
  32. 32.
    Berens M, Rief M, Loo M, Giese A: The role of extracellular matrix in human astrocytoma migration and proliferation studied in a microliter scale assay. Clin Exp Metast 12: 405–415, 1994Google Scholar
  33. 33.
    Bernstein JJ, Goldberg WJ, de Vellis J: Migration of glia, gliomas and neurons transplanted to the central nervous system. Int J Devel Neurosci 11: 523–697, 1993Google Scholar
  34. 34.
    Bjerkvig R, Lund-Johansen M, Edvardsen K: Tumor cell invasion and angiogenesis in the central nervous system. Curr Opin Oncol 9(3): 223–229, 1997Google Scholar
  35. 35.
    Couldwell WT, De Tribolet N, Antel JP, Gauthier T, Kuppner MC: Adhesion molecules and malignant gliomas: implications for tumorigenesis. J Neurosurg 76: 782–791, 1992Google Scholar
  36. 36.
    De Clerck YA, Shimada H, Gonzalez-Gomez I: Tumor invasion in the central nervous system. J Neuro-Oncol 18: 111–121, 1994Google Scholar
  37. 37.
    Giese A, Berens ME: Determinants of Astrocytoma Migration. Cancer Res 54: 3897–3904, 1994Google Scholar
  38. 38.
    Giese A, Westphal M: Glioma invasion in the central nervous system. Neurosurgery 39: 235–252, 1996Google Scholar
  39. 39.
    Jung S, Hinek A, Tsugu A, Hubbard SL, Ackerley C, Becker LE, Rutka JT: Astrocytoma cell interaction with elastin substrates: Implications for astrocytoma invasive potential. Glia 25: 179–189, 1999Google Scholar
  40. 40.
    Maidment SL: The cytoskeleton and brain tumour cell migration. Anticancer Res 17: 4145–4150, 1997Google Scholar
  41. 41.
    Merzak A, Koocheckpour S, Pilkington GJ: CD44 mediates human glioma cell adhesion and invasion in vitro. Cancer Res 54: 3988–3992, 1994Google Scholar
  42. 42.
    Rutka JT, Matsuzawa K, Hubbard SL, Fukuyama K, Becker LE, Stetler-Stevenson W, Edwards DR, Dirks PB: Expression of TIMP-1, TIMP-2, 72-and 92-kDa type IV collagenase transcripts in human astrocytoma cell lines: Correlation with astrocytoma invasiveness. Int J Oncol 6: 877–884, 1995Google Scholar
  43. 43.
    Uhm JH, Dooley NP, Villemure J-G, Yong VW: Glioma invasion in vitro: Regulation by matrix metalloprotease-2 and protein kinase C. Clin Exp Metast 14: 421–433, 1996Google Scholar
  44. 44.
    Uhm JH, Dooley NP, Villemure JG: Mechanism of glioma invasion: Role of matrix-metalloroteinases. Can J Neurol Sci 24: 3–15, 1997Google Scholar
  45. 45.
    Giese A, Loo MA, Rief MD: Substrates for astrocytoma invasion. Neurosurgery 37: 294–302, 1995Google Scholar
  46. 46.
    Rutka JT, Muller M, Hubbard SL, Forsdyke J, Dirks PB, Jung S, Tsugu A, Becker LE, Costello P: Astrocytoma adhesion to extracellular matrix: Functional significance of integrin and focal adhesion kinase expression. J Neuropathol Exp Neurol 58: 198–209, 1999Google Scholar
  47. 47.
    Giese A, LooMA,Norman SA, Treasurywala S, Berens ME: Contrasting migratory response of astrocytoma cells to tenascin mediated by different integrins. J Cell Sci 109: 2161–2168, 1996Google Scholar
  48. 48.
    Asher R, Bignami A: Hyaluronate binding and CD44 expression in human glioblastoma cells and astrocytes. Exp Cell Res 203: 80–90, 1992Google Scholar
  49. 49.
    Lesley J, Hyman R, Kincade PW: CD44 and its interaction with extracellular matrix. Adv Immunol 54: 271–335, 1993Google Scholar
  50. 50.
    Thomas L, Byers HR, Vink J, Stamenkovic I: CD44H regulates tumor cell migration on hyaluronate-coated substrate. J Cell Biol 118: 971–977, 1992Google Scholar
  51. 51.
    Bartolazzi A, Peach R, Aruffo A, Stamenkovic I: Interaction between CD44 and hyaluronate is directly implicated in the regulation of tumor development. J Exp Med 180: 53–66, 1994Google Scholar
  52. 52.
    Gunthert U, Hofmann M, Rudy W, Reber S, Zoller M, Haussmann I, Matszku S, Wenzel A, Ponta H, Herlich P: A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65: 13–24, 1991Google Scholar
  53. 53.
    Sy MS, Guo YJ, Stamenkovic I: Distinct effects of two CD44 isoforms on tumor growth in vivo. J Exp Med 174: 859–866, 1991Google Scholar
  54. 54.
    Kaajik P, Troost D, Morsink F: Expression of CD44 splice variants in human primary brain tumors. J Neuro-Oncol 26: 185–190, 1995Google Scholar
  55. 55.
    Baltuch GH, de Tribolet N, Van Meir EG: Expression of the CD44adhesion molecule in tumors of the central and peripheral nervous system. J Neuro-Oncol 26: 191–198, 1995Google Scholar
  56. 56.
    Eibl RH, Pietsch T, Moll J: Expression of variant CD44 epitopes in human astrocytic brain tumors. J Neuro-Oncol 26: 165–170, 1995Google Scholar
  57. 57.
    Bourguignon LYW, Iida N, Welsh CF: Involvement of CD44 and its variant isoforms in membrane–cytoskeleton interaction, cell adhesion and tumor metastasis. J Neuro-Oncol 26: 201–208, 1995Google Scholar
  58. 58.
    Gingrah N, Ackerley CA, Moscarello MA: Localization of CD44 (P80) on the external surface of a human astrocytoma cell. Neuro Report 2: 441–444, 1991Google Scholar
  59. 59.
    Li H, Hamou M-F, de Tribolet N: Variant CD44 adhesion molecules are expressed in human brain metastases but not in glioblastomas. Cancer Res 53: 5345–5349, 1993Google Scholar
  60. 60.
    Kaya G, Rodriguez I, Jorcano JL, Vassalli P, Stamenkovic I: Selective suppression of CD44 in keratinocytes of mice bearing and antisense CD44 transgene driven by a tissuespecfic promoter disrupts hyaluronate metabolism in the skin and impairs keratinocyte proliferation. Genes and Development 11: 996–1007, 1997Google Scholar
  61. 61.
    Rutka JT, Ackerley C, Hubbard SL, Tilup A, Dirks PB, Jung S, Kurimoto M, Tsugu A, Becker LE: Characterization of glial filament: cytoskeletal interactions in human astrocytoma cells: An immuno-ultrastructural analysis. Europ J Cell Biol 76: 279–287, 1998Google Scholar
  62. 62.
    Turley EA, Hossain MZ, Sorokan T, Jordan LM, Nagy JI: Astrocyte and microglial motility in vitro is functionally dependent on the hyaluronan receptorRHAMM.Glia 12(1): 68–80, 1994Google Scholar
  63. 63.
    Collis L, Hall C, Lange L, Ziebell M, Prestwich R, Turley EA: Rapid hyaluronan uptake is associated with enhanced motility: implications for an intracellular mode of action. FEBS Lett 440: 444–449, 1998Google Scholar
  64. 64.
    Till KJ, Zuzel M, Cawley JC: The role of hyaluronan and interleukin 8 in the migration of chronic lymphocytic leukemia cells within lylmphoreticular tissues. Cancer Res 59: 4419–4426, 1999Google Scholar
  65. 65.
    Radotra B, McCormick D: Glioma invasion in vitro is mediated by CD44–hyaluronan interactions. J Pathol 181(4): 434–438, 1997Google Scholar
  66. 66.
    Radotra B, McCormick D: CD44 is involved in migration but not spreading of astrocytoma cell in vitro. Anticancer Res 17: 945–950, 1997Google Scholar
  67. 67.
    Koochekpour S, Pilkington G, Merzak A: Hyaluronic acid/CD44H interaction induces cell detachment and stimulates migration and invasion of human glioma cells in vitro. Int J Cancer 63(3): 450–454, 1995Google Scholar
  68. 68.
    Turley EA, Austen L, Moore D: Ras-transformed cells express both CD44 and RHAMM hyaluronan receptors: Only RHAMM is essential for hyaluronan-promoted locomotion. Exp Cell Res 207: 277–282, 1993Google Scholar
  69. 69.
    Hofmann M, Fieber C, Assman V, Gottlicher M, Sleeman J, Plug R, Howells N, von Stein O, Ponta H, Herrlich P: Identification of IHABP, a 95 kDa intracellular hyaluronate binding protein. J Cell Sci 111: 1673–1684, 1998Google Scholar
  70. 70.
    Entwistle J, Zhang S, Yang B, Wong C, Li Q, Hall C, Jingbo A, Mowat M, Greenberg A, Turley E: Characterization of the murine gene encoding the hyaluronan receptor RHAMM. Gene 163(2): 233–238, 1995Google Scholar
  71. 71.
    Hall CL, Lange LA, Prober DA, Zhang S, Turley EA: pp60(c-src) is required for cell locomotion regulated by the hyaluronanreceptor RHAMM. Oncogene 21:13(10): 2213–2224, 1996Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Yasuhiko Akiyama
    • 1
  • Shin Jung
    • 1
  • Bodour Salhia
    • 1
  • Sangpyung Lee
    • 1
  • Sherrilynn Hubbard
    • 1
  • Michael Taylor
    • 1
  • Todd Mainprize
    • 1
  • Kotaro Akaishi
    • 1
  • Wouter van Furth
    • 1
  • James T. Rutka
    • 1
  1. 1.Arthur and Sonia Labatt Brain Tumor Research Centre and the Division of Neurosurgery, The Hospital for Sick ChildrenUniversity of TorontoTorontoCanada

Personalised recommendations