Advertisement

Journal of Chemical Ecology

, Volume 27, Issue 11, pp 2263–2273 | Cite as

Extracts of Flourensia cernua (L): Volatile Constituents and Antifungal, Antialgal, and Antitermite Bioactivities

  • Mario Tellez
  • Rick Estell
  • Ed Fredrickson
  • Janine Powell
  • David Wedge
  • Kevin Schrader
  • Mozaina Kobaisy
Article

Abstract

The chemical components of tarbush (Flourensia cernua) leaves were fractionated by extracting successively with hexanes, diethyl ether, and ethanol. Volatile profiles of each fraction were identified by using GC-MS. The hexanes fraction contained mostly monoterpenoids, while the ethanol fraction volatiles were primarily sesquiterpenoids. Crude fractions were tested for activity against fungi, algae, and termites. Application of as little as 1 μg of the essential oil from the hexanes fraction was sufficient to provide visible antifungal activity in bioautography assays. The diethyl ether fraction showed selective activity against the cyanobacterium responsible for the 2-methylisoborneol-induced off-flavor sometimes associated with catfish farming operations. All three fractions exhibited a high degree of antitermite activity.

Flourensia cernua fractionation activity fungi cyanobacteria algae termite Colletotrichum Oscillatoria Selenastrum Reticulitermes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. ADAMS, R. P. 1995. Identification of Essential Oil Components by Gas Chromatography and Mass Spectroscopy. Allured Publishing, Carol Stream, Illinois.Google Scholar
  2. DAYAN, F. E. and TELLEZ, M. R. 1999. Phytotoxicity of tarbush (Flourensia cernua DC). Allelopathy J. 6:1–12.Google Scholar
  3. DILLON, M. O. 1984. A Systematic Study of Flourensia (Asteraceae, Heliantheae). Field Museum of Natural History, Chicago, Illinois.Google Scholar
  4. DOLLAHITE, J. N. and ALLEN, T. J. 1975. The toxicity of the fruit of Flourensia cernua (tarbush) (Blackbrush). Southwest. Vet. 28:113–117.Google Scholar
  5. DUKE, S. O., CANEL, C., RIMANDO, A. M., TELLEZ, M. R., DUKE, M. V., and PAUL, R. N. 2000. Current and potential exploitation of plant glandular trichome productivity. Adv. Bot. Res. 31: 121–152.Google Scholar
  6. ESPINEL-INGROFF, A. and KERKERING, T. M. 1991. Spectrophotometric method of inoculum preparation for the in vitro susceptibility testing of filamentous fungi. J. Clin. Microbiol. 29:393–394.Google Scholar
  7. ESTELL, R., TELLEZ, M., FREDRICKSON, E., ANDERSON, D., HAVSTAD, K., and REMMENGA, M. 2001. Extracts of Flourensia cernua reduce consumption of alfalfa pellets by sheep. J. Chem. Ecol. 27:2277–2287.Google Scholar
  8. HIMEJIMA, M. HOBSON, K., OTSUKA, T., WOOD, D., and KUBO, I. 1992. Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: A defense mechanism against microbial invasion. J. Chem. Ecol. 18:1809–1818.Google Scholar
  9. HOMANS, A. L. and FUCHS, A. 1970. Direct bioautography on thin-layer chromatograms as a method for detecting fungitoxic substances. J. Chromatogr. 51:327–329.Google Scholar
  10. MATHEWS, F. 1944. The toxicity of the ripe fruit of blackbrush or tarbrush (Flourensia cernua) for sheep and goats. Texas Agric. Exp. Stn. Bull. No. 664.Google Scholar
  11. MIYAKADO, M., KATO, T., OHNO, N., and MABRY, T. J. 1976. Pinocembrin and (+)-β-eudesmol from Hymenoclea monogyra and Baccharis glutinosa. Phytochemistry 15:846.Google Scholar
  12. NIST/EPA/NIH 1990. NIST/EPA/NIH 75K MS Library.Google Scholar
  13. ONAWUNMI, G., YISAK, W., and OGUNLANA, E. 1984. Antibacterial constituents in the essential oil of Cymbopogon citratus (DC.) Stapf. J. Ethno-Pharmacol. 12:279–286.Google Scholar
  14. PAERL, H. W. and TUCKER, C. S. 1995. Ecology of blue-green algae in aquaculture ponds. J. World Aquacult. Soc. 26:109.Google Scholar
  15. SCHRADER, K., DE REGT, M., TUCKER, C., and DUKE, S. 1997. A rapid bioassay for selective algicides. Weed Technol. 11:767–774.Google Scholar
  16. TELLEZ, M., ESTELL, R., FREDRICKSON, E., and HAVSTAD, K. 1997. Essential oil of Flourensia cernua DC. J. Essent. Oil Res. 9:619–624.Google Scholar
  17. TELLEZ, M. R., CANEL, C., RIMANDO, A. M., and DUKE, S. O. 1999. Differential accumulation of isoprenoids in glanded and glandless Artemisia annua L. Phytochemistry 52:1035–1040.Google Scholar
  18. TELLEZ, M. R., DAYAN, F. E., SCHRADER, K. K., WEDGE, D. E., and DUKE, S. O. 2000. Composition and some biological activities of the essential oil of Callicarpa americana (L.). J. Agric. Food Chem. 48:3008–3012.Google Scholar
  19. VAN DER PLOEG, M., DENNIS, M. E., and DE REGT, M. Q. 1995. Biology of Oscillatoria Cf. Chalybea, A 2-Methylisoborneol producing blue-green alga of Mississippi catfish ponds. Water Sci. Technol. 31:173.Google Scholar
  20. WEDGE, D. and KUHAJEK, J. 1998. A microbioassay for fungicide discovery. SAAS Bull. Biochem. Biotechnol. 11:1–7.Google Scholar
  21. WEDGE, D. and NAGLE, D. G. 2000. A new 2D-TLC bioautography method for the discovery of novel antifungal agents to control plant pathogens. J. Nat. Prod. 63:1050–1054.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Mario Tellez
    • 1
  • Rick Estell
    • 2
  • Ed Fredrickson
    • 2
  • Janine Powell
    • 3
  • David Wedge
    • 4
  • Kevin Schrader
    • 4
  • Mozaina Kobaisy
    • 4
  1. 1.USDA/ARS Natural Products Utilization Research UnitUniversity
  2. 2.USDA/ARS Jornada Experimental RangeLas Cruces
  3. 3.USDA-ARS Biological Control & Mass Rearing ResearchStoneville
  4. 4.USDA/ARS Natural Products Utilization Research UnitUniversity

Personalised recommendations