Foundations of Physics

, Volume 31, Issue 9, pp 1357–1400

Proper-Time Formulation of Relativistic Dynamics

  • J. M. C. Montanus
Article

Abstract

It will be argued that Minkowski's implementation of distances is inconsistent. An alternative implementation will be proposed. In the new model the proper time of an object is taken as its fourth coordinate. Distances will be measured according to a four dimensional Euclidean metric. In the present approach mass is a constant of motion. A mass can therefore be ascribed to photons and neutrinos. Mechanics and dynamics will be reformulated in close correspondence with classical physics. Of particular interest is the equation of motion for the proper time momentum. In the classical limit it reduces to the classical law of conservation of (kinetic+potential) energy. In the relativistic limit it is similar to the conservation of energy of the theory of relativity. The conservation of proper time momentum allows for an alternative explanation for Compton scattering and pair annihilation. On the basis of the proper time formulation of electrodynamics also an alternative explanation will be offered for the spectra of hydrogenic atoms. The proper time formulation of gravitational dynamics leads to the correct predictions of gravitational time dilation, the deflection of light and the precession of the perihelia of planets. For this no curvature will be needed. That is, spacetime is flat everywhere, even in the presence of sources of gravitation. Some cosmological consequences will be discussed. The present approach gives a new notion to energy, antiparticles and the structure of spacetime. The contents of the present paper will have important implications for the foundations of physics in general.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Minkowski, Phys. Z. 20, 104 (1908); reprinted in The Principle of Relativity (Dover, NewYork, 1923).Google Scholar
  2. 2.
    T. E. Phipps, Jr., Heretical Verities (Non-Fiction Library, Urbana, 1986), p. 37.Google Scholar
  3. 3.
    J. R. Fanchi, Found. Phys. 23, 487 (1993).Google Scholar
  4. 4.
    L. P. Horwitz and C. Piron, Helv. Phys. Acta 46, 316 (1973).Google Scholar
  5. 5.
    L. P. Horwitz and A. Soffer, Helv. Phys. Acta 53, 112 (1980).Google Scholar
  6. 6.
    L. P. Horwitz and Y. Lavie, Phys. Rev. D 26, 819 (1982).Google Scholar
  7. 7.
    R. Arshansky and L. P. Horwitz, Phys. Rev. D 29, 2860 (1984).Google Scholar
  8. 8.
    R. Arshansky and L. P. Horwitz, J.Math.Phys. 30, 213 (1988).Google Scholar
  9. 9.
    F. H. Gaioli and E. T. Garcia-Alvarez, Gen. Relativity Gravitation 26, 1267 (1994).Google Scholar
  10. 10.
    J. M. C. Montanus, Phys. Essays 4, 350 (1991).Google Scholar
  11. 11.
    J. M. C. Montanus, Phys. Essays 6, 540 (1993).Google Scholar
  12. 12.
    J. M. C. Montanus, Hadronic J. 22, 625 (1999).Google Scholar
  13. 13.
    A. Shadowitz, Special Relativity (Saunders, 1968), p. 22.Google Scholar
  14. 14.
    B. Nodland and J. P. Ralston, Phys. Rev. Lett. 78, 3043 (1997).Google Scholar
  15. 15.
    P. Marmet, Phys. Essays 9, 96 (1996).Google Scholar
  16. 16.
    T. E. Phipps Jr., Phys. Essays 4, 368 (1991).Google Scholar
  17. 17.
    D. E. Spencer and U. Y. Shama, Phys. Essays 9, 476 (1996).Google Scholar
  18. 18.
    P. Moon, D. E. Spencer, and E. E. Moon, Phys. Essays 4, 249 (1991).Google Scholar
  19. 19.
    R. B. Driscoll, Phys. Essays 7, 355 (1994).Google Scholar
  20. 20.
    R. Hatch, Galilean Electrodyn. 6, 51 (1995).Google Scholar
  21. 21.
    F. Selleri, Open Questions in Relativistic Physics (Apeiron, Montreal, 1998), p. 69.Google Scholar
  22. 22.
    T. L. Gill, Found. Phys. 28, 1561 (1998).Google Scholar
  23. 23.
    H. A. Lorentz, Kon. Akad. Wetensch. Amsterdam 1, 74 (1892); English version: Collected Papers 4 (Nijhoff, Den Haag, 1934- 1939), p. 219.Google Scholar
  24. 24.
    J. M. C. Montanus, Phys. Essays 10, 666 (1997).Google Scholar
  25. 25.
    C. Jeffries, Phys. Essays 8, 168 (1995).Google Scholar
  26. 26.
    Y. Huang, Phys. Essays 8, 532 (1991).Google Scholar
  27. 27.
    J. M. C. Montanus, Phys. Essays 11, 395 (1998).Google Scholar
  28. 28.
    A. O. Barut, Electrodynamics and Classical Theory of Fields and Particles (Dover, New York, 1980).Google Scholar
  29. 29.
    J. M. C. Montanus, Phys. Essays 11, 280 (1998).Google Scholar
  30. 30.
    T. L. Gill, W. W. Zachary, and J. Lindesay, Found. Phys. Lett. 10, 547 (1997).Google Scholar
  31. 31.
    J. M. C. Montanus, Phys. Essays 10, 116 (1997).Google Scholar
  32. 32.
    T. L. Gill, W. W. Zachary, and J. Lindesay, Int. J. Theor. Phys. 37, 2573 (1998).Google Scholar
  33. 33.
    R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (Wiley, NewYork, 1974), p. 112.Google Scholar
  34. 34.
    J. M. C. Montanus, Phys. Essays 11, 563 (1998).Google Scholar
  35. 35.
    H. Arp, Seeing Red (Apeiron, Montreal, 1998).Google Scholar
  36. 36.
    H. Arp, Astrophys. J. 496, 661 (1998).Google Scholar
  37. 37.
    J. Narlikar and H. Arp, Astrophys. J. 405, 51 (1993).Google Scholar
  38. 38.
    R. Hatch, Galilean Electrodyn. 6, 73 (1995).Google Scholar
  39. 39.
    C. K. Whithey, Galilean Electrodyn. 11, 2 (2000).Google Scholar
  40. 40.
    C. M. Will, Was Einstein Right? (Basic Books, NewYork, 1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • J. M. C. Montanus
    • 1
  1. 1.AlmereThe Netherlands

Personalised recommendations