Journal of Atmospheric Chemistry

, Volume 40, Issue 3, pp 247–273

Elemental Composition of Mineral Aerosol Generated from Sudan Sahara Sand

  • Mohamed A. H. Eltayeb
  • Jasna Injuk
  • Willy Maenhaut
  • René E. Van Grieken
Article

Abstract

Eighteen soil samples from central Sudan were fractionated by dry sieving ina size fraction from <45 μm to >300 μm while aerosols generatedfrom these soils were fractionated in the particle size range from 0.25 μmto >16 μm. The elemental concentrations of soil samples were determinedby energy-dispersive X-ray fluorescence, while the elemental concentrationsof generated aerosols were analysed by particle-induced X-ray emission. Theelements Al, K and Rb show a slight positive fractionation with decreasingparticle size throughout the particle size range studied. The concentrationsof Ca, Mn, Fe, Sr and Y are maximum in the small soil size fraction (<45μm) and decrease for the coarse soil size fractions, while in the mineralaerosol particle sizes (0.25– > 16 μm) the concentrations remainmore or less constant. The size distributions for Cr, Ti and Zr show a maximumin the particle size range 45–100 μm and the concentrations of theseelements decrease sharply in the aerosol fraction down to 16 μm to remainconstant in the smaller aerosol fractions.Enrichment factors for the elements were calculated relative to five referencematerials: average crustal rock, average soil, the investigated Sahara bulksoil, the finest fraction of this soil and the aerosol generated from thissoil, and using four reference elements: Al, Si, Ti and Fe. The enrichmentfactors were found to vary significantly depending on the choice of thereference material or the reference element. The enrichment factors for theSudan mineral aerosol were almost identical to those for Khartoum atmosphericaerosol but different from those for Namib mineral aerosol and Israelatmospheric aerosol following dust storms. Multivariate display methods(cluster analysis, principal component analysis and linear discriminantanalysis) were applied to the element ratios in the mineral aerosol from theSahara and Namib and this showed that these mineral aerosol can bedifferentiated into different groups. An attempt was also made to relate themineral aerosol to its parent soil through the use of these multivariatetechniques and the elemental ratios in both the mineral aerosols and the bulksoils (Namib and Sahara). It was also possible using the elemental ratios andthe multivariate display methods to associate the crustal component to themineral aerosol generated from the Sahara.

Sahara soil atmospheric aerosols energy-dispersive X-ray fluorescence particle-induced X-ray emission enrichment factors multivariate display methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batterman, S. A., Dzubay, T. G., and Baumgardner, R. E., 1988: Development of crustal profiles for receptor modelling, Atmos. Environ. 22, 1821-1828.Google Scholar
  2. Bergametti, G., 1987: Apports de matiè re par voie atmosphérique à la Mediterranée Occidentale: Aspects géochimiques et météorologiques, PhD dissertation, University of Paris VII, p. 296.Google Scholar
  3. Bernard, P. C. and Van Grieken, R. E., 1992: Comparison and evaluation of hierarchical cluster techniques applied to automated electron probe X-ray microanalysis data, Anal. Chim. Acta 267, 81-93.Google Scholar
  4. Buursink, J., 1971: Soils of Central Sudan, PhD dissertation, Rijksuniversiteit Utrecht, The Netherlands.Google Scholar
  5. Cornille, P., Maenhaut, W., and Pacyna, J. M., 1988: Sources and characteristics of the atmospheric aerosol near Damascus, Syria, Atmos. Environ. 24A, 1083-1093.Google Scholar
  6. Duce, B., 1995: In Charlson and Heintzenberg, Aerosol Forcing of the Climate, Wiley and Sons, New York, NY.Google Scholar
  7. Eltayeb, M. A. H., Van Espen, P. J., Cafmeyer, J., Van Grieken, R. E., and Maenhaut, W., 1992: Size-differentiated composition of aerosol in Khartoum, Sudan, Sci. Total Environ. 120, 281-299.Google Scholar
  8. Eltayeb, M. A. H., Van Grieken, R. E., Maenhaut, W., and Annegarn, H. A. J., 1993a: Aerosol-soil fractionation for Namib desert samples, Atmos. Environ. 27A, 669-678.Google Scholar
  9. Eltayeb, M. A. H., Xhoffer, C. F., Van Espen, P. J., Van Grieken, R. E., and Maenhaut, W., 1993b: Sources and composition of aerosol from Khartoum, Sudan, Atmos. Environ. 27B, 67-76.Google Scholar
  10. Forina, M., Lanteri, S., and Armanino, C., 1987: Chemometric and species identification: Chemometric in food chemistry, Topics Current Chem. 141, 91-143.Google Scholar
  11. Ganor, E., Foner, H. A., Brenner, S., Neeman, E., and Lavi, N., 1991: The chemical composition of aerosol settling in Israel following dust storms, Atmos. Environ. 25A, 2665-2670.Google Scholar
  12. Gomez, M. J., De Benzo, Z., Gomez, C., Marcano, E., Torres, H., and Ramirez, M., 1990: Comparison of methods for outlier detection and their effects on the classification results for a particular data base, Anal. Chim. Acta 239, 229-243.Google Scholar
  13. Haswell, S. J., 1992: Practical Guide to Chemometrics, Marcel Dekker, Inc., New York/Basel/Hong Kong.Google Scholar
  14. Heidam, N. Z., 1984: The components of Arctic aerosol, Atmos. Environ. 18, 329-343.Google Scholar
  15. Heidam, N. Z., 1985: Crustal enrichments in the Arctic aerosol, Atmos. Environ. 19, 2083-2097.Google Scholar
  16. He, F. and Van Espen, P., 1991: A general approach for quantitative energy-dispersive X-ray fluorescence analysis based on fundamental parameters, Anal. Chem. 63, 2237-2244.Google Scholar
  17. Jolliffe, I. T., 1986: Principal Component Analysis, Springer-Verlag Inc., New York, NY.Google Scholar
  18. Joseph, A. F., 1994: The composition of some Sudan soils, J. Agr. Sci. 14, 490-497.Google Scholar
  19. Lawson, D. R. and Winchester, J. W. (1979) A standard crustal aerosol as a reference for elemental enrichment factors, Atmos. Environ. 13, 925-930.Google Scholar
  20. Maenhaut, W. and Raemdonck, H., 1984: Accurate calibration of a Si(Li) detector for PIXE analysis, Nucl. Instrum. Methods 229, 123-136.Google Scholar
  21. Massart, D. L., Vandeginste, B. G. M., Michotte, D. Y., and Kauffman, L., 1988: Chemometrics: A Text Book, Elsevier, Amsterdam, The Netherlands.Google Scholar
  22. Mason, B., 1966: Principles of Geochemistry, Wiley and Sons, New York, NY.Google Scholar
  23. Meloun, M., Militky, J., and Forina, M., 1992: Chemometric for Analytical Chemistry. Volume 1: PC Aided Statistical Data Analysis, Ellis Horwood, London/Toronto/Sidney/Tokyo/Singapore.Google Scholar
  24. Miller, M. S., Friedlander, S. K., and Hidy, G.M., 1972: A chemical element balance for the Pasadena aerosol, J. Coll. Interface Sci. 39, 165-176.Google Scholar
  25. Rahn, K. A., 1976: The chemical composition of the atmospheric aerosol, Technical Report, University of Rhode Island, Kingston, RI.Google Scholar
  26. Schütz, L. and Rahn, K., 1982: Trace elements in erodible soils, Atmos. Environ. 16, 171-176.Google Scholar
  27. Schütz, L. and Sebert, M., 1987: Mineral aerosols and source identification, Atmos. Environ. 18, 1-10.Google Scholar
  28. Schütz, L., 1979: Sahara dust transport over the North Atlantic Ocean-model calculations and measurements, in C. Morales (ed.), Saharan Dust, Scope 14, John Wiley, Chichester, pp. 267-277.Google Scholar
  29. Schütz, L. W., Buat-Menard, P., Carvalho, R. A. C., Cruzado, A., Prospero, J. M., Harriss, R., Heidam, N. Z., and Jaenicke, R., 1990: The long range transport of mineral aerosol: Group report, in A. H. Knap and Mary-Scott Kaiser (eds), The Long-Range Atmospheric Transport of Natural and Contaminant Substances, Kluwer Academic Publishers, Dordrecht, pp. 197-229.Google Scholar
  30. Sindowski, K. H., 1965: Sedimentpetrographisch-bodenkundliche Untersuchungen an einigen Steppen-Vollwüsten-und Extremwüstenböden und Gesteinen aus der mittleren Sahara (Libyen), in W. Meckelein (ed.), Forschungen in der zentralen Sahara, G. Westermann, Oldenburg, FRG, pp. 152-179.Google Scholar
  31. Stuart, B., Dzubay, T. G., and Baumgardner, R. E., 1988: Development of crustal profits for receptor modelling, Atmos. Environ. 22, 1821-1829.Google Scholar
  32. Statgraphics user's guide-reference, 1988: STSC, Inc.Google Scholar
  33. Tatsuoka, M. M., 1971: Multivariate Analysis: Techniques for Educational and Psychological Research, Wiley, New York.Google Scholar
  34. Van Espen, P., 1984: A program for the processing of analytical data (DPP), Anal. Chim. Acta 165, 31-49.Google Scholar
  35. Vinogradov, A. P., 1959: The Geochemistry of Rare and Dispersed Chemical Elements in Soils, 2nd edn, Consultants Bureau, Inc., New York, NY.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Mohamed A. H. Eltayeb
    • 1
  • Jasna Injuk
    • 1
  • Willy Maenhaut
    • 2
  • René E. Van Grieken
    • 1
  1. 1.Department of ChemistryUniversity of Antwerp (UIA)Antwerp-WilrijkBelgium
  2. 2.Institute for Nuclear SciencesUniversity of GhentGhentBelgium

Personalised recommendations