, Volume 121, Issue 2, pp 163–172 | Cite as

Molecular mapping and characterization of traits controlling fiber quality in cotton

  • Russell J. Kohel
  • John Yu
  • Yong-Ha Park
  • Gerard R. Lazo


Cotton (Gossypium spp) is the world's leading natural fiber crop. Genetic manipulation continues to play a key role in the improvement of fiber quality properties. By use of DNA-based molecular markers and a polymorphic mapping population derived from an inter specific cross between TM-1 (G. hirsutum) and 3-79 (G. barbadense), thirteen quantitative trait loci (QTLs) controlling fiber quality properties were identified in 3-79, an extra long staple (ELS) cotton. Four QTLs influenced bundle fiber strength, three influenced fiber length, and six influenced fiber fineness. These QTLs were located on different chromosomes or linkage groups and collectively explained 30% to 60%of the total phenotypic variance for each fiber quality property in the F2 population. The effects and modes of action for the individual QTLs were characterized with 3-79 alleles in TM-1 genetic background. The results indicated more recessive than dominant, with much less additive effect in the gene mode. Transgressive segregation was observed for fiber fineness that could be beneficial to improvement of this trait. Molecular markers linked to fiber quality QTLs would be most effective in marker-assisted selection (MAS) of these recessive alleles in cotton breeding programs.

cotton (Gossypium hirsutum L. and G.barbadense L.) fiber quality properties quantitative trait loci (QTLs) random amplified polymorphic DNAs (RAPDs) restriction fragment lengthpolymorphisms (RFLPs) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agricultural Statistics Board 1999 ‘Annual Crop Summary.’ NASS, USDA Benedict, C.R., R.J. Kohel & H.L. Lewis, 1999. Cotton fiber quality, In: C.W. Smith & J.T. Cothren (Eds.), Cotton, pp. 269–288. John Wiley & Sons, NY.Google Scholar
  2. Burr, B., S.V. Evola, F.A. Burr & J.S. Beckmann, 1983. The application of restrictionfragment length polymorphism to plant breeding. In: J.K. Setlow & A. Hollaender (Eds.), Genetic Engineering, vol. 5, Plenum Press, NY.Google Scholar
  3. Deussen, H., 1992. Improved cotton fiber properties: The textile industry's key to success inglobal competition. Symposium: Cotton Fiber Cellulose: Structure, Function, and utilization, pp. 43–63. National Cotton Council America, Memphis, TN.Google Scholar
  4. deVicente, M.C. & S.D. Tanksley, 1993. QTL analysis of transgressivesegregation in an interspecific tomato cross. Genetics 134: 585–596.PubMedGoogle Scholar
  5. Edwards, M.D., C.W. Stuber & J.F. Wendel, 1987. Molecularmarker-facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution, and types of gene action. Genetics 116: 113–125.PubMedGoogle Scholar
  6. Feinberg, A. & B. Vogelstein, 1984.Anal Biochem 137: 266–267.PubMedCrossRefGoogle Scholar
  7. Kohel, R.J., 1973. Genetic nomenclature in cotton. J Hered 64:291–195.Google Scholar
  8. Kohel, R.J., 1999a. Cotton Improvement: A Perspective. Cotton World 1: (in press).Google Scholar
  9. Kohel, R.J.,1999b. Cotton germplasm resources and the potential for improved fiber production and quality, In: A.S. Basra (Ed.), Cotton Fibers, pp. 167–182. The Haworth Press, Inc, NY.Google Scholar
  10. Kohel, R.J., T.R. Richmond & C.F. Lewis,1970. Texas Marker-1. Description of a genetic standard for Gossypium hirsutum L. Crop Sci 10: 670–671.Google Scholar
  11. Lander, E.S. & D. Botstein, 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkagemaps. Genetics 121: 185–199.PubMedGoogle Scholar
  12. Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M.J. Daly, S.E. Lincoln & L. Newburg, 1987. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.PubMedCrossRefGoogle Scholar
  13. Lazo, G.R., Y.H. Park & R.J. Kohel, 1994,Identification of RAPD markers linked to fiber strength in Gossypium hirsutum and G. barbadense interspecific crosses. Proc Biochemistry of Cotton. September 28–30, 1994. Galveston, Texas.Google Scholar
  14. Park, Y.H. & R.J. Kohel, 1994. Effect ofconcentration of MgCl2 on random amplified DNA of cotton. BioTechniques 16: 652–656.PubMedGoogle Scholar
  15. Paterson, A.H.,E.S. Lander, J.D. Hewitt, S. Peterson, S.E. Lincoln & S.D. Tanksley, 1988. Resolution of quantitative traits into Mendelian factors, using a complete linkage map of restriction fragment length polymorphisms. Nature (London) 335: 721–726.CrossRefGoogle Scholar
  16. Reinisch, A.J., J. Dong, C.L. Brubaker, D.M. Stelly, J.F. Wendel & A.H. Paterson, 1994. Adetailed RFLP map of cotton. Gossypium hirsutum x G. barbadense: Chromosome organization and evolution in a disomic polyploid genome. Genetics 138: 129–147.Google Scholar
  17. Rick, C.M. & P.G. Smith, 1953. Novel variation in tomato specieshybrids. Am Nat 88: 359–373.CrossRefGoogle Scholar
  18. Shappley, Z.W., J.N. Jenkins, C.E. Watson Jr, A.L. Kahler & W.R. Meredith Jr, 1996. Establishment of molecular markers and linkage groups in two F2 populations of upland cotton. Theor Appl Genet 92: 915–919.CrossRefGoogle Scholar
  19. Stelly, S.M., 1993. Interfacing cytogenetics with the cotton genomemapping effort. Proc Beltwide Cotton Improv Conf, pp. 1545–1550.Google Scholar
  20. Tanksley, S.D., J.C. Miller, A.H. Paterson & R. Bernatzky, 1988. Molecular mapping of plant chromosomes, In: J. Gustafson & R. Appels (Eds.), Chromosome Structure and Function, pp. 157–172. Plenum Press, NY.Google Scholar
  21. Tanksley, S.D., N.D. Young, A.H. Paterson & M.W. Bonierbale, 1989. RFLP mapping in plant breeding: new tool for an old science. Biotechnology 7: 257–264.CrossRefGoogle Scholar
  22. Tanksley, S.D. & S.R. McCouch, 1997. Seed banks and molecular maps:unlocking genetic potential from the wild. Science 277: 1063–1066.PubMedCrossRefGoogle Scholar
  23. Yu, Z.H., J.F. Wang, R.E. Stall & C.E. Vallejos, 1995. Genomic localization of tomato genes that control a hypersensitive reaction to Xanthomonas campestris pv. vesicatoria (Doidge) Dye. Genetics 141: 675–682.PubMedGoogle Scholar
  24. Yu, Z.H., Y.-H. Park, G.R. Lazo & R.J. Kohel, 1997. Molecular mapping of the cotton genome. Proc of 5th International Congress of Plant Molecular Biology. September 21–27, 1997. Singapore.Google Scholar
  25. Yu, Z.H., Y.H. Park, G.R. Lazo & R.J. Kohel, 1998. Molecularmapping of the cotton genome: QTL analysis of fiber quality characteristics. Proc of Plant Animal Genome VI, Jan 18–22, 1998. San Diego California.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Russell J. Kohel
    • 1
  • John Yu
    • 1
  • Yong-Ha Park
    • 2
  • Gerard R. Lazo
    • 3
  1. 1.Crop Germplasm Research UnitUSDA-ARSCollege StationU.S.A.
  2. 2.Korean Environmental Technology Research Institute, Kangnam-kuSeoulKorea
  3. 3.Western Regional Research CenterUSDA-ARSAlbanyU.S.A.

Personalised recommendations