, Volume 4, Issue 2, pp 91–102

Endothelium in vitro: A review of human vascular endothelial cell lines for blood vessel-related research

  • Diane Bouïs
  • Geke A.P. Hospers
  • Coby Meijer
  • Grietje Molema
  • Nanno H. Mulder


Endothelial cells (EC) are currently used as in vitro model systems for various physiological and pathological processes, especially in angiogenesis research. Primary EC have a limited lifespan and display characteristics that differ from batch to batch due to their multidonor origin. In recent years many groups have established EC lines. This Review gives an overview of the advantages and disadvantages of currently available vascular EC lines. Its aim is to help the investigator to decide which cell line matches his or her research goal best. Truly immortalized cell lines are generally better characterized and more stable in their endothelial traits than EC that were given an extended life span. Presently the best characterized macro- and micro-vascular EC lines are EA.hy926 and HMEC-1, respectively.

cell line endothelium immortalized in vitro review 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hohenwarter O, Jakoubek A, Schmatz C, Katinger H. Expression of SV40 tumor antigens enables human endothelial cells to grow independently from foetal calf serum end exogenous growth factors. J Biotechnol 1994; 34: 205–11.PubMedCrossRefGoogle Scholar
  2. 2.
    Cines DB, Pollak ES, Buck CA et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998; 91(10): 3527–61.PubMedGoogle Scholar
  3. 3.
    Bachetti T, Morbidelli L. Endothelial cells in culture: A model for studying vascular functions. Parmacol Res 2000; 42(1): 9–19.CrossRefGoogle Scholar
  4. 4.
    Ruoslahti E, Rajotte D. An address system in the vasculature of normal tissues and tumors. Annu Rev Immunol 2000; 18: 813–27.PubMedCrossRefGoogle Scholar
  5. 5.
    Pinkney JH, Stehouwer CDE, Coppack SW, Yudkin JS. Endothelial dysfunction: Cause of the insulin resistance syndrome. Diabetes 1997; 46(Suppl 2): S9–13.PubMedGoogle Scholar
  6. 6.
    Gallagher GL, Sumpio BE. Endothelial Cells. Mt. Kisco, New York: Futura Publishing Company 1997; 151–86.Google Scholar
  7. 7.
    Suri C, Jones PF, Patan S et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87(7): 1171–80.PubMedCrossRefGoogle Scholar
  8. 8.
    Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. identification by morphologic and immunologic criteria. J Clin Invest 1973; 52: 2745–56.PubMedGoogle Scholar
  9. 9.
    Watson CA, Camera-Benson L, Palmer-Crocker R, Pober JS. Variability among human umbilical vein endothelial cultues. Science 1995; 268: 447–8.PubMedGoogle Scholar
  10. 10.
    Schütz M, Friedl P. Isolation and cultivation of endothelial cells derived from human placenta. Eur J Cell Biol 1996; 71: 395–401.PubMedGoogle Scholar
  11. 11.
    Folkman J, Haudenschild CC, Zetter BR. Long-term culture of capillary endothelial cells. Proc Natl Acad Sci USA 1979; 76(10): 5217–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Weibel ER, Palade GE. New cytoplasmic components in arterial endothelia. J Cell Biol 1964; 23: 101–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Ewenstein BM, Warhol MJ, Handin RI, Pober JS. Composition of the von Willebrand factor storage organelle (Weibel-Palade body) isolated from cultured human umbilical vein endothelial cells. J Cell Biol 1987; 104: 1423–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Edgell CJS, McDonald CC, Graham JB. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA 1983; 80: 3734–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Pober JS, Gimbrone MA Jr, Lapierre LA et al. Overlapping patterns of activation of human endothelial cells by interleukin-1, tumor necrosis factor and immune interferon. J Immunol 1986; 137(6): 1893–986.PubMedGoogle Scholar
  16. 16.
    Dejana E. Endothelial adherens junctions: Implications in the control of vascular permeability and angiogenesis. J Clin Invest 1996; 98(9): 1949–53.PubMedGoogle Scholar
  17. 17.
    Holthöfer H, Virtanen I, Kariniemi AL et al. Ulex europaeus I lectin as a marker for vascular endothelium in human tissues. Lab Invest 1982; 47(1): 60–6.PubMedGoogle Scholar
  18. 18.
    Voyta JC, Via DP, Butterfield CE, Zetter BR. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol 1984; 99: 2034–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Johnson AR, Erdös EG. Metabolism of vasoactive peptides by human endothelial cells in culture: Angiotensin I converting enzyme (kininase II) and angiotensinase. J Clin Invest 1977; 59: 684–95.PubMedGoogle Scholar
  20. 20.
    Michael A Gimbrone J, Fareed GC. Transformation of cultured human vascular endothelium by SV40 DNA. Cell 1976; 9(2): 685–93.Google Scholar
  21. 21.
    Ide H, Minamishima Y, Eizuru Y et al. ‘Transformation’ of human endothelial cells by SV40 virions. Microbiol Immunol 1988; 32(1): 45–55.PubMedGoogle Scholar
  22. 22.
    Salahuddin SZ, Nakamura S, Biberfeld P et al. Angiogenic properties of Kaposi's sarcoma-derived cells after long-term culture in vitro. Science 1988; 242: 430–3.PubMedGoogle Scholar
  23. 23.
    Werner S, Hofschneider PH, Stürzl M et al. Cytochemical and molecular properties of simian virus 40 transformed Kaposi's sarcoma-derived cells: Evidence for the secretion of a member of the fibroblast growth factor family. J Cell Physiol 1989; 141: 490–502.PubMedCrossRefGoogle Scholar
  24. 24.
    Corbeil J, Evans LA, Vasak E et al. Culture and properties of cells derived from Kaposi sarcoma. J Immunol 1991; 146(9): 2972–76.PubMedGoogle Scholar
  25. 25.
    Iijima S, Ishida M, Nakajima-Iijima S et al. Immortalization of human endothelial cells by origin-defective simian virus 40 DNA. Agric Biol Chem 1991; 55(11): 2847–53.Google Scholar
  26. 26.
    Fickling SA, Tooze JA, Whitley GSJ. Characterization of human umbilical vein cell lines produced by transfection with the early region of SV40. Exp Cell Res 1992; 201: 517–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Hohenwarter O, Zinser E, Schmatz C et al. Influence of transfected SV40 early region on growth and differentiation of human endothelial cells. J Biotechnol 1992; 25: 349–56.PubMedCrossRefGoogle Scholar
  28. 28.
    Hohenwarter O, Schmatz C, Katinger H. Stability of von Willebrand factor secretion in different human endothelial hybrid cell lines. Cytotechnology 1992; 8: 31–7.PubMedGoogle Scholar
  29. 29.
    Lassalle P, LaGrou C, Delneste Y et al. Human endothelial cells transfected by SV 40 T antigens: Characterization and potential use as a source of normal endothelial factors. Eur J Immunol 1992; 22: 425–31.PubMedGoogle Scholar
  30. 30.
    Schütz M, Teifel M, Friendl P. Estalishment of a human placental endothelial cell line with extended life span after transfection with SV 40 T-antigens. Eur J Cell Biol 1997; 74(4): 315–20.PubMedGoogle Scholar
  31. 31.
    Hansen TN, Dawson PE, Brockbank KG. Effects of hypothermia upon endothelial cells: Mechanisms and clinical importance. Cryobiology 1994; 31: 101–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Lieber M, Smith B, Szakal A et al. A continuous tumor cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer 1976; 17: 62–70.PubMedGoogle Scholar
  33. 33.
    Thornhill MH, Li J, Haskard DO. Leukocyte endothelial cell adhesion: A study comparing human umbilical vein endothelial cells and the endothelial cell line EA-hy-926. Scand J Immunol 1993; 38: 279–86.PubMedCrossRefGoogle Scholar
  34. 34.
    van Leeuwen EBM, Veenstra R, Wijk RV et al. Characterization of immortalized human umbilical and iliac vein endothelial cell lines after transfection with SV40 large T-antigen. Blood Coagul Fibrinolysis 2000; 11(1): 15–25.PubMedGoogle Scholar
  35. 35.
    Meri S, Mattila P, Renkonen R. Regulation of CD59 expression on the human endothelial cell line EA.hy962. Eur J Immunol 1993; 23: 2511–6.PubMedGoogle Scholar
  36. 36.
    Brown KA, Vora A, Biggerstaff J et al. Application of an immortalized human cell line to the leucocyte-endothelial aherence assay. J Immunol Methods 1993; 163: 13–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Burke-Gaffney A, Hellewell PG. Regulation of ICAM-1 by dexamethasone in a human vascular endothelial cell line EAhy926. Am J Physiol 1996; 270(2Pt1): C552–61.PubMedGoogle Scholar
  38. 38.
    Kita M, Eguchi K, Kawabe Y et al. Staphylococcal enterotoxin b-specific adhesion of murine splenic T cells to a human endothelial cell line. Immunology 1996; 88: 441–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Walkden BJ, Turner AJ. Expression of ECE and related membrane peptidases in the EA.hy926 cell line. J Cardiovasc Pharmacol 1995; 26(Suppl 3): S59–60.PubMedGoogle Scholar
  40. 40.
    Takahashi K, Sawasaki Y, Hata JI et al. Spontaneous transformation and immortalization of human endothelial cells. In Vitro Cell Dev Biol 1990; 25: 256–74.Google Scholar
  41. 41.
    Kiessling F, Kartenbeck J, Haller C. Cell-cell contacts in the human cell line ECV304 exhibit both endothelial and epithelial characteristics. Cell Tissue Res 1999; 297(1): 131–40.PubMedCrossRefGoogle Scholar
  42. 42.
    Brown J, Reading SJ, Jones S et al. Critical evaluation of ECV304 as a human endothelial cell model defined by genetic analysis and functional responses: A comparison with the human bladder cancer derived epithelial cell line t24/83. Lab Invest 2000; 80(1): 37–45.PubMedGoogle Scholar
  43. 43.
    Kobayashi M, Kondo M, Mitsui Y. Establishment of human endothelial cell lines in a serum-free culture and its application for expression of transfected prepro endothelin gene. Hum Cell 1991; 4(4): 296–305.PubMedGoogle Scholar
  44. 44.
    López-Pedrera C, Jardí M, Inglès-Esteve J et al. Characterization of tissue factor expression on the human endothelial cell line ECV304. Am J Hematol 1997; 56(2): 71–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Takahashi K, Sawasaki Y. Rare spontaneously transformed human endothelial cell line provides useful research tool. In Vitro Cell Dev Biol 1992; 28A: 380–2.Google Scholar
  46. 46.
    Haller C, Kiessling F, Kübler W. Polarized expression of heterologous membrane proteins transfected in a human endothelial-derived cell line. Eur J Cell Biol 1998; 75(4): 353–61.PubMedGoogle Scholar
  47. 47.
    Faller DV, Kourembanas S, Ginsberg D et al. Immortalization of human endothelial cells by murine sarcoma viruses, without morphologic transformation. J Cell Physiol 1988; 134: 47–56.PubMedCrossRefGoogle Scholar
  48. 48.
    Schwartz B, Vicart P, Delouis C, Paulin D. Mammalian cell lines can be efficiently established in vitro upon expression of the SV40 large T antigen driven by a promotor sequence derived from the human vimentin gene. Biol Cell 1991; 73: 7–14.PubMedCrossRefGoogle Scholar
  49. 49.
    Vicart P, Testut P, Schwartz B et al. Cell adhesion markers are expressed by a stable human endothelial cell line transformed by the SV40 large T antigen under vimentin promoter control. J Cell Physiol 1993; 157: 41–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Sasaguri Y, Yanagi H, Nagase H et al. Collagenase production by immortalized human aortic endothelial cells infected with simian virus 40. Virchows Arch B Cell Pathol 1991; 60: 91–7.Google Scholar
  51. 51.
    Kato S, Sasaguri Y, Azagami S et al. Ambient pressure stimulates immortalized human aortic endothelial cells to increase DNA synthesis and matrix metalloproteinase 1 (tissue collagenase) production. Virchows Arch 1994; 425: 385–90.PubMedCrossRefGoogle Scholar
  52. 52.
    Cockerill GW, Meyer G, Noack L et al. Characterization of a spontaneously transformed human endothelial cell line. Lab Invest 1994; 71(4): 497–509.PubMedGoogle Scholar
  53. 53.
    Fontijn R, Hop C, Brinkman HJ et al. Maintenance of vascular endothelial cell-specific properties after immortalization with an amphotrophic replication-deficient retrovirus containing human papilloma virus 16 e5/e7 DNA. Exp Cell Res 1995; 216: 199–207.PubMedCrossRefGoogle Scholar
  54. 54.
    Moldovan F, Soliman HR, Bennani H et al. Propriétés fonctionelles d'une nouvelle lignée de cellules endothéliales humaines immortalisées. C R Acad Sci III 1995; 318: 951–8.PubMedGoogle Scholar
  55. 55.
    Tonquèze ML, Jamin C, Böhme M et al. Establishment and characterization of permanent human endothelial cell clones. Lupus 1996; 5: 103–12.PubMedGoogle Scholar
  56. 56.
    Yang J, Chang E, Cherry AM et al. Human endothelial cell life extension by telomerase expression. J Biol Chem 1999; 274(37): 26141–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Davison PM, Bensch K, Karasek MA. Isolation and growth of endothelial cells from the microvessels of the newborn human foreskin in cell culture. J Invest Dermatol 1980; 75: 316–21.PubMedCrossRefGoogle Scholar
  58. 58.
    Sherer GK, Fitzharris TP, Faulk WP, LeRoy EC. Cultivation of microvascular endothelial cells from human preputial skin. In Vitro 1980; 16(8): 675–84.PubMedGoogle Scholar
  59. 59.
    Sherer GK, Fitzharris TP, LeRoy EC. Morphologic and functional characterization of cultured microvascular endothelial cells obtained from human preputial skin. In Vitro 1979; 15: 201–2.Google Scholar
  60. 60.
    Swerlick RA, Lee KH, Wick TM, Lawley TJ. Human dermal microvascular endothelial but not human umbilical vein endothelial cells express CD36 in vivo and in vitro. J Immunol 1992; 148(1): 78–83.PubMedGoogle Scholar
  61. 61.
    Karasek MA. Microvascular endothelial cell culture. J Invest Dermatol 1989; 93: 33S-38S.PubMedCrossRefGoogle Scholar
  62. 62.
    Kern PA, Knedler A, Eckel RH. Isolation and culture of microvascular endothelium from human adipose tissue. J Clin Invest 1983; 71: 1822–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Ades EW, Candal FJ, Swerlick RA et al. HMEC-1: Establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol 1992; 99: 683–90.PubMedCrossRefGoogle Scholar
  64. 64.
    Muruganandam A, Herx LM, Monette R et al. Development of immortalized human cerebromicrovascular endothelial cell line as an in vitro model of the human blood-brain barrier. FASEB J 1997; 11(13): 1187–97.PubMedGoogle Scholar
  65. 65.
    Hering S, Griffin BE, Strauss M. Immortalization of human fetal sinusoidal liver cells by polyoma virus large T antigen. Exp Cell Res 1991; 195: 1–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Xu Y, Swerlick RA, Sepp N et al. Characterization of expression and modulation of cell adhesion molecules on an immortalized human dermal microvascular endothelial cell line (HMEC-1). J Invest Dermatol 1994; 102(6): 833–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Pruckler JM, Lawley TJ, Ades EW. Use of a human microvascular endothelial cell line as a model system to evaluate cholesterol uptake. Pathobiology 1993; 61: 283–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Candal FJ, Bosse DC, Vogler WR, Ades EW. Inhibition of induced angiogenesis in a human microvascular endothelial cell line by ET-18-OCH3. Cancer Chemother Pharmacol 1994; 34: 175–8.PubMedGoogle Scholar
  69. 69.
    Robinson KA, Candal FJ, Scott NA, Andes EW. Seeding of vascular grafts with an immortalized human dermal microvascular endothelial cell line. Angiology 1995; 46(2): 107–13.PubMedGoogle Scholar
  70. 70.
    Scott NA, Candal FJ, Robinson KA, Ades EW. Seeding of intracoronary stents with immortalized human microvascular endothelial cells. Am Heart J 1995; 129(5): 860–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Kamal K, Du W, Mills I, Sumpio BE. Antiproliferative effect of elevated glucose in human microvascular endothelial cells. J Cell Biochem 1998; 71(4): 491–501.PubMedCrossRefGoogle Scholar
  72. 72.
    Budworth RA, Anderson M, Clothier RH, Leach L. Histamine-induced changes in the actin cytoskeleton of the human microvascular endothelial cell line HMEC-1. Toxicol In Vitro 1999; 13(4–5), 789–95.CrossRefGoogle Scholar
  73. 73.
    Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Asahara T, Takahashi T, Masuda H et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999; 18(14): 3964–72.PubMedCrossRefGoogle Scholar
  75. 75.
    Asahara T, Masuda H, Takahashi T et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999; 85: 221–8.PubMedGoogle Scholar
  76. 76.
    Candal FJ, Rafii S, Parker JT et al. BMEC-1: A human bone marrow microvascular endothelial cell line with primary cell characteristics. Microvascr Res 1996; 52: 221–34.CrossRefGoogle Scholar
  77. 77.
    Schweitzer KM, Vicart P, Delouis C et al. Characterization of a newly established human bone marrow endothelial cell line: Distinct adhesive properties for hematopoietic progenitors compared with human umbilical vein endothelial cells. Lab Invest 1997; 76(1): 25–36.PubMedGoogle Scholar
  78. 78.
    Lehr JE, Pienta KJ. Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. J Natl Cancer Inst 1998; 90(2): 118–23.PubMedCrossRefGoogle Scholar
  79. 79.
    Heffelfinger SC, Hawkins HH, Barrish J et al. SK HEP-1: A human cell line of endothelial origin. In Vitro Cell Dev Biol 1992; 28A: 136–42.PubMedGoogle Scholar
  80. 80.
    Hoover ML, Vétvica V, Hoffpauir JM, Tamburro CH. Human endothelial cell line from an angiosarcoma. In Vitro Cell Dev Biol 1993; 29A: 199–202.PubMedGoogle Scholar
  81. 81.
    Lidington EA, Moyes DL, McCormack AM, Rose ML. A comparison of primary endothelial cells and endothelial cell lines for studies of immune interactions. Transplant Immunol 1999; 7: 239–46.CrossRefGoogle Scholar
  82. 82.
    Obeso J, Weber J, Auerbach R. A hemangioendotheliaoma-derived cell line: Its use as a model for the study of endothelial cell biology. Lab Invest 1990; 63(2): 259–69.PubMedGoogle Scholar
  83. 83.
    Plendl J, Sinowatz F, Auerbach R. A transformed murine myocardial vascular endothelial cell clone: Characterization of cells in vitro and of tumors derived from clone in situ. Virchows Arch 1995; 426(6): 619–28.PubMedCrossRefGoogle Scholar
  84. 84.
    Auerbach R, Alby L, Morrissey LW et al. Expression of organ-specific antigens on capillary endothelial cells. Microvasc Res 1985; 29: 401–11.PubMedCrossRefGoogle Scholar
  85. 85.
    Moyer CF, Huggins E, Saraptopoulos S et al. Cloned endothelium from autoimmune vascular disease retain structural and functional characteristics of normal endothelial cells. Exp Cell Res 1992; 199: 63–73.PubMedCrossRefGoogle Scholar
  86. 86.
    Yamazaki K, Lehr JE, Rhim JS, Pienta KJ. Establishment of an immortalized Copenhagen rat bone marrow endothelial cell line. In Vivo 1996; 10(4): 459–62.PubMedGoogle Scholar
  87. 87.
    Diglio CA, Grammas P, Giacomelli F, Wiener J. Rat heart-derived endothelial and smooth muscle cell cultures: Isolation, cloning and characterization. Tissue Cell 1988; 20(4): 477–92.PubMedCrossRefGoogle Scholar
  88. 88.
    Regina A, Romero IA, Greenwood J et al. Dexamethasone regulation of p-glycoprotein activity in an immortalized rat brain endothelial cell line GPNT. J Neurochem 1999; 73(5): 1954–63.PubMedGoogle Scholar
  89. 89.
    Lokeshwar VB, Iida N, Bourguignon LYW. The cell adhesion molecule GP116, is a new CD44 variant (ex14/v10) involved in hyaluronic acid binding and endothelial cell proliferation. J Biol Chem 1996; 271(39): 23853–64.PubMedCrossRefGoogle Scholar
  90. 90.
    Streeten EA, Ornberg R, Curcio F et al. Cloned endothelial cells from fetal bovine bone. Proc Natl Acad Sci USA 1989; 86(3): 916–20.PubMedCrossRefGoogle Scholar
  91. 91.
    Durieu-Trautman O, Foignant-Chaverot N, Pedomo J et al. Immortalization of brain capillary endothelial cells with maintenace of structural characteristsics of the blood-brain barrier endothelium. In Vitro Cell Dev Biol 1991; 27A: 771–8.Google Scholar
  92. 92.
    Maher SE, Karmann K, Min W, Hughes CC, Pober JS, Brothwell AL. Porcine endothelial CD86 is a major costimulator of xenogenic human T cells: Cloning, sequencing, and functional expression in human endothelial cells. J Immunol 1996; 157(9): 3838–44.PubMedGoogle Scholar
  93. 93.
    Sepp A, Skacel P, Lindstedt R, Lechler RI. Expression of alpha-1,3-galactose and other type 2 oligosaccharide structures in a porcine endothelial cell line transfected with human alpha-1,2-fucosyltransferase cDNA. J Biol Chem 1997; 272(37): 23104–10.PubMedCrossRefGoogle Scholar
  94. 94.
    Christenson LK, Stouffer RL. Isolation and culture of microvascular endothelial cells from the primate corpus luteum. Biol Reprod 1996; 55: 1397–1404.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Diane Bouïs
    • 1
  • Geke A.P. Hospers
    • 2
  • Coby Meijer
    • 1
  • Grietje Molema
    • 3
  • Nanno H. Mulder
    • 1
  1. 1.Department of Medical OncologyUniversity Hospital GroningenThe Netherlands
  2. 2.Department of Medical OncologyUniversity Hospital GroningenThe Netherlands Tel:
  3. 3.Department of Pathology and Laboratory Medicine, Medical Biology SectionUniversity Hospital GroningenThe Netherlands

Personalised recommendations