Advertisement

Journal of Statistical Physics

, Volume 105, Issue 1–2, pp 49–91 | Cite as

Adsorbing and Collapsing Directed Animals

  • E. J. Janse van Rensburg
  • A. Rechnitzer
Article

Abstract

A model of a self-interacting directed animal, which also interacts with a solid wall, is studied as a model of a directed branched polymer which can undergo both a collapse and an adsorption transition. The directed animal is confined to a 45° wedge, and it interacts with one of the walls of this wedge. The existence of a thermodynamic limit in this model shown, and the presence of an adsorption transition is demonstrated by using constructive techniques. By comparing this model to a process of directed percolation, we show that there is also a collapse or θ-transition in this model. We examine directed percolation in a wedge to show that there is a collapse phase present for arbitrary large values of the adsorption activity. The generating function of adsorbing directed animals in a half-space is found next from which we find the tricritical exponents associated with the adsorption transition. A full solution for a collapsing directed animal seems intractible, so instead we examine the collapse transition of a model of column convex directed animals with a contact activity next.

directed animals directed percolation branched polymer adsorption generating functions convex directed animals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. T. Batchelor and C. M. Yung, Phys. Rev. Lett. 74:2026 (1995).Google Scholar
  2. 2.
    J. Betrema and J.-G. Penaud, Theor. Comp. Sci. 117:67 (1993).Google Scholar
  3. 3.
    M. Bousquet-Melou, J. Phys. A: Math. Gen. 25:1925 (1992).Google Scholar
  4. 4.
    M. Bousquet-Melou, Disc. Appl. Math. 48:21 (1994).Google Scholar
  5. 5.
    M. Bousquet-Melou, Disc. Math. 154:1 (1996).Google Scholar
  6. 6.
    M. Bousquet-Melou, Rapport d'habilitation, LaBRI Universite Bordeaux 1 (1996a).Google Scholar
  7. 7.
    M. Bousquet-Melou, Disc. Math. 180:73 (1998).Google Scholar
  8. 8.
    M. Bousquet-Melou and A. Rechnitzer, submitted to Disc. Math. (2000).Google Scholar
  9. 9.
    R. Brak, J. M. Essam, and A. L. Owczarek, J. Stat. Phys. 93:155 (1998).Google Scholar
  10. 10.
    R. Brak, A. J. Guttmann, and S. G. Whittington, J. Math. Chem. 8:255 (1991).Google Scholar
  11. 11.
    R. Brak, A. J. Guttmann, and S. G. Whittington, J. Phys. A: Math. Gen. 25:2437 (1992).Google Scholar
  12. 12.
    R. Brak, A. L. Owczarek, and T. Prellberg, J. Stat. Phys. 76:1101 (1994).Google Scholar
  13. 13.
    J. L. Cardy, Phase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1987), p. 55.Google Scholar
  14. 14.
    M. C. T. P. Carvalho and V. Privman, J. Phys. A: Math. Gen. 21 L1033 (1988).Google Scholar
  15. 15.
    K. De'Bell and T. Lookman, Rev. Mod. Phys. 65:87 (1993).Google Scholar
  16. 16.
    B. Derrida and H. J. Hermann, J. Physique 46:1365 (1983).Google Scholar
  17. 17.
    D. Dhar, Phys. Rev. Lett. 49:959 (1982).Google Scholar
  18. 18.
    D. Dhar, Phys. Rev. Lett. 51:853 (1983).Google Scholar
  19. 19.
    C. Domb, J. Phys. A: Math. Gen. 9:L141 (1976).Google Scholar
  20. 20.
    B. Duplantier and H. Saleur, Rev. 57:3179 (1986).Google Scholar
  21. 21.
    E. Eisenreigler, J. Chem. Phys. 79:1052 (1983).Google Scholar
  22. 22.
    E. Eisenreigler, J. Chem. Phys. 82:1032 (1985).Google Scholar
  23. 23.
    E. Eisenreigler, K. Kremer, and K. Binder, J. Chem. Phys. 77:6296 (1982).Google Scholar
  24. 24.
    R. S. Ellis, Entropy, Large Deviations and Statistical Mechanics (Springer, New York, 1985).Google Scholar
  25. 25.
    M. E. Fisher, J. Stat. Phys. 34:667 (1984).Google Scholar
  26. 26.
    P. Flajolet and R. Sedgewick, Analytic Combinatorics: Functional Equations, Rational and Algebraic Functions, INRIA Rapport de recherche No. 4103 (2001).Google Scholar
  27. 27.
    S. Flesia and D. S. Gaunt, J. Phys. A: Math. Gen. 25:2127 (1992).Google Scholar
  28. 28.
    S. Flesia, D. S. Gaunt, C. Soteros, and S. G. Whittington, J. Phys. A: Math. Gen. 25:3515 (1992).Google Scholar
  29. 29.
    S. Flesia, D. S. Gaunt, C. Soteros, and S. G. Whittington, J. Phys. A: Math. Gen. 26:L993 (1993).Google Scholar
  30. 30.
    S. Flesia, D. S. Gaunt, C. Soteros, and S. G. Whittington, J. Phys. A: Math. Gen. 27:5831 (1994).Google Scholar
  31. 31.
    D. S. Gaunt and S. Flesia, Physica A 168:602 (1990).Google Scholar
  32. 32.
    D. S. Gaunt and S. Flesia, J. Phys. A: Math. Gen. 24:3655 (1991).Google Scholar
  33. 33.
    G. Grimmett, Percolation (Springer, Berlin, 1989).Google Scholar
  34. 34.
    J. M. Hammersley, Math. Proc. Camb. Phil. Soc. 56:642 (1957).Google Scholar
  35. 35.
    J. M. Hammersley, Math. Proc. Camb. Phil. Soc. 57:516 (1961).Google Scholar
  36. 36.
    J. M. Hammersley, G. M. Torrie, and S. G. Whittington, J. Phys. A: Math. Gen. 15:539 (1982).Google Scholar
  37. 37.
    J. M. Hammersley and S. G. Whittington, J. Phys. A: Math. Gen. 18:101 (1985).Google Scholar
  38. 38.
    F. Harary, MagyarTud. Akad. Mat. Kutató Intezetenek Kozlemanyei 5:63 (1960).Google Scholar
  39. 39.
    Hille, Functional Analysis and Semi-Groups. AMS Colloquim Publications, Vol. 31, American Mathematical Society (Providence, Rhode Island, 1948).Google Scholar
  40. 40.
    E. J. Janse van Rensburg, J. Phys. A: Math. Gen. 31:8295 (1998).Google Scholar
  41. 41.
    E. J. Janse van Rensburg, Ann. Comb. 3:451 (1999).Google Scholar
  42. 42.
    E. J. Janse van Rensburg, J. Phys. A: Math. Gen. 33:3653 (2000).Google Scholar
  43. 43.
    E. J. Janse van Rensburg, The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles, Oxford Series in Mathematics and Its Applications, Vol. 18 (Oxford University Press, 2000a).Google Scholar
  44. 44.
    E. J. Janse van Rensburg, J. Phys. A: Math. Gen. 33:3653 (2000b).Google Scholar
  45. 45.
    E. J. Janse van Rensburg and S. You, J. Phys. A: Math. Gen. 31:8635 (1998).Google Scholar
  46. 46.
    D. Klarner, Fibonacci Quart. 3:9 (1965).Google Scholar
  47. 47.
    D. Klarner, Can. J. Math. 19:851 (1967).Google Scholar
  48. 48.
    T. C. Lubensky and J. Isaacson, Phys. Rev. 20:2130 (1979).Google Scholar
  49. 49.
    G. Pólya, J. Comb. Theo. 6:102 (1969).Google Scholar
  50. 50.
    T. Prellberg and R. Brak, J. Stat. Phys. 78:701 (1995).Google Scholar
  51. 51.
    V. Privman, G. Forgacs, and H. L. Frisch, (1988). Phys. Rev. B 37:9897.Google Scholar
  52. 52.
    V. Privman and N. M. Švrakić, J. Stat. Phys. 51:1091 (1988).Google Scholar
  53. 53.
    V. Privman and N. M. Švrakić, Phys. Rev. Lett. 60:1107 (1988a).Google Scholar
  54. 54.
    A. Rechnitzer, Some Problems in the Counting of Lattice Animals, Polyominoes, Polygons and Walks, Ph.D. thesis (University of Melbourne, 2000).Google Scholar
  55. 55.
    D. Stauffer, Phys. Rep. 54:1 (1979).Google Scholar
  56. 56.
    G. X. Viennot, Combinatoire énumérative, G. Labelle and P. Leroux, eds., Lect. Notes in Math., Vol. 1234 (1985).Google Scholar
  57. 57.
    S. You and E. J. Janse van Rensburg, J. Phys. A: Math. Gen. 33:1171 (2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • E. J. Janse van Rensburg
    • 1
  • A. Rechnitzer
    • 1
  1. 1.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations