Antonie van Leeuwenhoek

, Volume 80, Issue 1, pp 57–63 | Cite as

Rapid flow cytometry – Nile red assessment of PHA cellular content and heterogeneity in cultures of Pseudomonas aeruginosa 47T2 (NCIB 40044) grown in waste frying oil

  • J. Vidal-Mas
  • O. Resina-Pelfort
  • E. Haba
  • J. Comas
  • A. Manresa
  • J. Vives-RegoEmail author


The accumulation of cytoplasmic polyhydroxyalkanoates (PHAs) and the heterogeneity of bacterial populations were analysed by flow cytometry and SYTO-13 and Nile red staining in rhamnolipid-producing Pseudomonas aeruginosa cultures grown in waste frying oil as carbon source. A combination of SYTO-13 and Nile red fluorescence with cytometric forward and side scatter values may allow increases in the final production of polyhydroxyalkanoates (PHA) by two basic mechanisms: (i) rapid assessment of polyhydroxyalkanoate content and (ii) definition of flow cytometric cell sorting protocols to select high polyhydroxyalkanoate (PHA)-producing strains. We report a rapid (less than 30 min) flow cytometric assessment of PHAs in Pseudomonas aeruginosa 47T2 following Nile red staining: (i) to estimate cellular PHAs content; (ii) to study heterogeneity of the batch cultures producing PHAs and (iii) to establish the basis for sorting sub-populations with a high capacity to accumulate PHAs.

flow cytometry Nile red PHA Pseudomonas aeruginosa rhamnolipids SYTO-13 waste frying oils 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An GH, Bielich J, Auerbach R & Johnson EA (1991) Isolation and characterization of carotenoid hyperproducing mutants of yeast by flow cytometry and cell sorting. Biotech. (N.Y). 9: 70-73Google Scholar
  2. Anderson AJ & Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472Google Scholar
  3. Azuma T, Harrison GI & Demain AL (1992) Isolation of a gramicidin S hyperproducing strain of Bacillus brevis by use of a fluorescence activated cell sorting system. Appl. Microbiol. Biotechnol. 38: 173-178Google Scholar
  4. Betz JW, Aretz W & Härtel W (1984) Use of flow cytometry in industrial microbiology for strain improvement programs. Cytometry 5: 145-150Google Scholar
  5. Chandrasekaran E & Bemiller J (1980) Constituent analysis of glucosamonoglucans. In: Wolfrom LW a ML (Ed.) Methods in Carbohydrate Chemistry, Vol III (pp 89-97)Google Scholar
  6. Comas J & Vives-Rego J (1998) Enumeration, viability and heterogeneity in Staphyloccus aureus cultures by flow cytometry. J. Microbiol. Methods 32: 45-53Google Scholar
  7. Comas J & Vives-Rego J (1999) Use of calcein and SYTO-13 to assess cell cycle phases and osmotic shock effects on E. coli and Staphylococcus aureus by flow cytometry. J.Microbiol. Methods 34: 215-221Google Scholar
  8. Cromwick A, Foglia T & Lenz RW (1996) The microbial production of poly(hydroxyalkanoates) from tallow. Appl. Microbiol. Biotechnol. 46: 464-469Google Scholar
  9. Davey HM & Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol. Rev. 60: 641-696Google Scholar
  10. Degelau A, Scheper T, Bailey JE & Guske C (1995) Fluorometric measurement of poly-?-hydroxybutyrate in Alcaligenes autrophus by flow cytometry and spectrofluorometry. Appl. Microbiol. Biotechnol. 42: 653-657Google Scholar
  11. Füchtenbusch B, Wullbrandt D & Steinbüchel A (2000) Production of polyhydroxyalkanoic acids by Ralstonia eutropha and Pseudomonas oleovorans from oil remaining from biotechnological rhamnose production. Appl. Microbiol. Biotechnol. 53: 167-172Google Scholar
  12. Gorenflo V, Steinbbüchel A, Marose S, Rieseberg M & Sheper T (1999) Quantification of bacterial polyhydroxyalkanoic acids by Nile Red staining. Appl. Microbiol. Biotechnol. 51: 765-772Google Scholar
  13. Greenspan P, Mayer EP & Fowler SD (1985) Nile Red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100: 965-973Google Scholar
  14. Guindulain T, Comas J & Vives-Rego J (1997) Use of nucleic acid dyes SYTO-13, TOTO-1 and YOYO-1 in the study of Escherichia coli and marine prokaryotic populations by flow cytometry. Appl. Environ. Microbiol. 63: 4608-4611Google Scholar
  15. Haba E, Bresco O, Ferrer C, Marqués A, Busquets M & Manresa A (2000a) Isolation of lipase-secreting bacteria by deploying used frying oil as selective substrate. Enz. Microbial Technol. 26: 40-44Google Scholar
  16. Haba E, Espuny M, Busquets M & Manresa A (2000b) Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J. Appl.Microbiol. 88: 379-387Google Scholar
  17. Huisman GW, de Leeuw O, Eggink G & Witholt B (1989) Synthesis of polyhydroxyalkanoates is a common feature among pseudomonads. Appl. Environm. Microbiol. 55: 536-544Google Scholar
  18. Kim GJ, Lee IY, Yoon SC, Shin YC & Park YH (1997) Enhanced yield and high production of medium-chain-length poly(3-hydroxyalkanoates) in a two step fed batch cultivation of Pseudomonas putida by combined use of glucose and octanoate. Enz. Microbial Technol. 20: 500-505Google Scholar
  19. Lee SY (1996) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol. 14: 431-438Google Scholar
  20. Lee S, Choi JI & Wong HH (1999) Recent advances in polyhydroxyalkanoate production by bacterial fermentation: minireview. Intern. J. Biol. Macromol. 25: 31-36Google Scholar
  21. Madison LL & Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53Google Scholar
  22. Nir R, Lamed R, Sahar E & Shabtai Y (1992) Flow cytometric isolation of growth-rate mutants-a yeast model. J. Microbiol. Methods 14: 247-256Google Scholar
  23. Preusting H, van Houten R, Hoefs A, van Langenberghe EK, Favre-Bulle O & Wiltholt B (1993) High cell density cultivation of Pseudomonas oleovorans: and production of poly(3-hydroxyalkanoates) in two liquid phase batch and fed-batch systems. Biotechnol Bioengin. 41: 550-556Google Scholar
  24. Reusch RN (1999) Polyphosphate/Poly-(R)-3-hydroxybutyrate ion channels in cell membranes. In: Schöeder HC & Miller WEG (Eds) Progress in Molecular and Subcellular Biology, Vol. 23 (pp 151-182) Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  25. Reusch RN & Sadoff HL (1988) Putative structure and function of a poly-b-hydroxybutyrate calcium polyphosphate channel in bacterial plasma membranes. Proc. Natl. Acad. Sci. USA 85: 4176-4180Google Scholar
  26. Robinson JP (1999) Current protocols in Cytometry. John Wiley & Sons Inc., New YorkGoogle Scholar
  27. Shapiro HM (1995) Practical flow cytometry, 3rd edition. John Willey & Sons Inc., New YorkGoogle Scholar
  28. Smith JL (1907) On the simultaneously staining of neutral fat and fatty acids by oxacine dyes. J. Pathol. Bacteriol. 12: 1-4Google Scholar
  29. Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D & Steinbüchel A (1999) A sensitive, viable-colony staining method using Nile Red for direct screening of bacteria that accumulates polyhydroxyalkanpoic acids and other lipid storage compounds. Arch. Microbiol. 171: 73-80Google Scholar
  30. Steinbüchel A & Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol. 16: 419-427Google Scholar
  31. Steinbüchel A & Valentin HE (1995) Diversity of bacterial polyalkaonic acids. FEMS Microbiol. Lett. 128: 219-228Google Scholar
  32. Troussellier M, Courties C, Lebaron P & Servais P (1999) Flow cytometric discrimination of bacterial populations in seawater based on SYTO13 staining of nucleic acids. FEMS Microbiol. Ecol. 29: 319-330Google Scholar
  33. Vives-Rego J, Neve von Caron G & Lebaron P (2000) Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol. Rev. 24: 429-448Google Scholar
  34. Wallner G, Fuchs B, Spring S, Beisker W & Amann R (1997) Flow sorting of microorganisms for molecular analysis. Appl. Environ. Microbiol. 63: 4223-4231Google Scholar
  35. Wang F & Lee SY (1997) Production of poly(3-hydroxybutyrate) by fed-batch culture of filamentation-suppressed recombinant Escherichia coli. Appl. Environ. Microbiol. 63: 4765-4769Google Scholar
  36. Williams SF, Martin DP, Horowitz DM & Peoples OP (1999) PHA applications: addressing the price performance issue. I. Tissue engineering. Intern. J. Biological Macromol. 25: 111-121Google Scholar
  37. Wong HH & Lee SY (1998) Poly-(3-hydroxybutyrate) production from whey by high-density cultivation of recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 50: 30-33Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • J. Vidal-Mas
    • 1
  • O. Resina-Pelfort
    • 2
  • E. Haba
    • 1
  • J. Comas
    • 3
  • A. Manresa
    • 1
  • J. Vives-Rego
    • 2
    Email author
  1. 1.Departament de Microbiologia i Parasitologia Sanitàries, Facultat de FarmaciaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departament de MicrobiologiaUniversitat de BarcelonaBarcelona
  3. 3.Servei Científico TècnicUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations