Environmental Biology of Fishes

, Volume 62, Issue 4, pp 415–427

Food capture kinematics of the suction feeding horn shark, Heterodontus francisci

  • Margaret A. Edmonds
  • Philip J. Motta
  • Robert E. Hueter


The goal of this study was to examine the feeding kinematics of the horn shark, Heterodontus francisci, a member of the most basal clade of galeomorph sharks, the Heterodontiformes. The accessibility of the food was manipulated to determine if the horn shark modulated capture. Three different methods of presenting food were used to mimic the different positions of prey items found in the natural diet of the horn shark. Food was presented unattached to the substrate, securely attached, or fitted snugly in a tube. Using high-speed video kinematic analysis, capture events were examined. Heterodontus francisci uses inertial suction facilitated by rapid mandible depression and labial cartilage protrusion to capture food. The horn shark conforms to a capture kinematic profile characteristic of both basal and derived inertial suction feeding sharks. Unusual post-capture behaviors include body leveraging, use of the mouth to form a seal over food, and chisel-like palatoquadrate protrusion. When presented with food of different accessibility, Heterodontus francisci used one consistent kinematic pattern for capture that was not modulated. Only post-capture behaviors varied according to food accessibility.

elasmobranchs prey capture modulation diet 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bros, W.E. & B.C. Cowell. 1987. A technique for optimizing sample size (replication). J. Exp. Mar. Biol. Ecol. 114: 63–71.Google Scholar
  2. Chu, C.T. 1989. Functional design and prey capture dynamics in an ecologically generalized surf perch (Embiotocidae). J. Zool., London 217: 417–440.Google Scholar
  3. Clark, E. & D.R. Nelson. 1997. Young whale sharks, Rhincodon typus, feeding on a copepod bloom near La Paz, Mexico. Env. Biol. Fish. 50: 63–73.Google Scholar
  4. Ferry-Graham, L.A. 1997. Feeding kinematics of juvenile swellsharks, Cephaloscyllium ventriosum. J. Exp. Biol. 200: 1255–1269.Google Scholar
  5. Ferry-Graham, L.A. 1998. Effects of prey size and elusivity on prey capture kinematics in leopard sharks, Triakis semifasciata. J. Exp. Biol. 201: 2433–2444.Google Scholar
  6. Frazzetta, T.H. 1994. Feeding mechanisms in sharks and other elasmobranchs. Adv. Comp. Environ. Physiol. 18: 31–57.Google Scholar
  7. Frazzetta, T.H. & C.D. Prange. 1987. Movements of cephalic components during feeding in some requiem sharks (Carcharhiniformes: Carcharhinidae). Copeia 1987: 979–993.Google Scholar
  8. Holmgren, N. 1940. Studies on the head of fishes. Embryological, morphological, and phylogenetical researches part I. Development of the skull in sharks and rays. Acta. Zool. 21: 51–267.Google Scholar
  9. Holmgren, N. 1942. Studies on the head of fishes. An embryological, morphological, and phylogenetical study part III. The phylogeny of elasmobranch fishes. Acta. Zool. 23: 129–261.Google Scholar
  10. Lauder, G.V. 1980. Evolution of the feeding mechanism in primitive actinopterygian fishes: a functional anatomical analysis of Polypterus, Lepisosteus, and Amia. J. Morph. 163: 283–317.Google Scholar
  11. Liem, K.F. 1978. Modulatory multiplicity in the functional repertoire of the feeding mechanisms in cichlids, part I. Piscivores. J. Morph. 158: 323–360.Google Scholar
  12. Liem, K.F. 1979. Modulatory multiplicity in the feeding mechanism of the cichlids, as exemplified by the invertebrate pickers of Lake Tanganyika. J. Zool., London 189: 93–125.Google Scholar
  13. Liem, K.F. & K.S. Kaufman. 1984. Intraspecific macroevolution: functional biology of the polymorphic cichlid species Cichlasoma minckleyi. pp. 203–215. In: A.A. Echelle & I. Kornfeld (ed.) Evolution of Fish Species Flocks, University of Maine Press, Orono.Google Scholar
  14. Liem, K.F. 1993. Ecomorphology of the teleostean skull. pp. 422–452. In: J. Hanken & B.K. Hall (ed.) The Skull: Functional and Evolutionary Mechanisms, Vol. 3, University of Chicago Press, Chicago.Google Scholar
  15. Maisey, J.G. 1980. An evaluation of jaw suspension in sharks. Amer. Mus. Nov. 2706: 1–17.Google Scholar
  16. McKaye, K.R. & A. Marsh. 1983. Food switching by two specialized algae-scraping cichlid fishes in Lake Malawi, Africa. Oecologia (Berlin) 56: 245–248.Google Scholar
  17. Moss, S.A. 1972. The feeding mechanism of sharks of the family Carcharhinidae. J. Zool., London 167: 423–436.Google Scholar
  18. Moss, S.A. 1977. Feeding mechanisms in sharks. Amer. Zool. 17: 355–364.Google Scholar
  19. Motta, P.J., R.E. Hueter & T.C. Tricas. 1991. An electromyographic analysis of the biting mechanisms of the lemon shark, Negaprion brevirostris: functional and evolutionary implications. J. Morph. 210: 55–69.Google Scholar
  20. Motta, P.J., T.C. Tricas, R.E. Hueter & A.P. Summers. 1997. Feeding mechanism and functional morphology of the jaws of the lemon shark Negaprion brevirostris (Chondrichthyes, Carcharhinidae). J. Exp. Biol. 200: 2765–2780.Google Scholar
  21. Motta, P.J. & C.D. Wilga. 2001. Advances in the study of feeding behaviors, mechanisms, and mechanics of sharks. Env. Biol. Fish. 60: 131–156.Google Scholar
  22. Muller, M., J.W.M. Osse & J.H.G. Verhagen. 1982. Aquantitative hydrodynamic model of suction feeding in fish. J. Theor. Biol. 95: 49–79.Google Scholar
  23. Muller, M. & J.M.W. Osse. 1984. Hydrodynamics of suction feeding in fish. Trans. Zool. Soc. Lond. 37: 51–135.Google Scholar
  24. Nemeth, D.H. 1997. Modulation of attack behavior and its effect on feeding performance in a trophic generalist fish, Hexagrammos decagrammus. J. Exp. Biol. 200: 2155–2164.Google Scholar
  25. Nobiling, G. 1977. Die Biomechanik des Kiefferapparates beim Stierkopfhai (Heterodontus portusjacksoni = Heterodontus philippi). Adv. Anat. Embryol. Cell Biol. 52: 1–52.Google Scholar
  26. Norton, S.F. & E.L. Brainerd. 1993. Convergence in the feeding mechanics of ecomorphologically similar species in the Centrarchidae and Cichlidae. J. Exp. Biol. 176: 11–29.Google Scholar
  27. Reilly, S.M. & G.V. Lauder. 1989. Physiological bases of feeding behavior in salamanders: do motor patterns vary with prey type? J. Exp. Biol. 141: 343–358.Google Scholar
  28. Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.Google Scholar
  29. Robinson, M.P. 1999. Patterns of growth and the effects of scale on the feeding kinematics of the nurse shark, Ginglymostoma cirratum. M.S. Thesis, University of South Florida, Tampa. 78 pp.Google Scholar
  30. Sanderson, S.L. 1988. Variation in neuromuscular activity during prey capture by trophic specialists and generalists (Pisces: Labridae). Brain. Behav. Evol. 32: 257–268.Google Scholar
  31. Sanderson, S.L. 1990. Versatility and specialization in labrid fishes: ecomorphological implications. Oecologia 84: 272–279.Google Scholar
  32. Schaeffer, B. 1967. Comments on elasmobranch evolution. pp. 3–35. In: P.W. Gilbert, R.F. Mathewson & D.P. Rall (ed.) Sharks, Skates and Rays, John Hopkins Press, Baltimore.Google Scholar
  33. Segura-Zarzosa, J.C., L.A. Abitia-Cardenas & F. Galvan-Magana. 1997. Observations of the feeding habits of the shark Heterodontus francisci Girard 1854 (Chondrichthyes: Heterodontidae), in San Ignacio Lagoon, Baja California Sur, Mexico. Ciencias Marinas 23: 111–128.Google Scholar
  34. Shirai, S. 1996. Phylogenetic interrelationships of neoselachians (Chondrichthyes: Euselachii). pp. 9–34. In: M.L.J. Stiassny, L.R. Parenti & G.D. Johnson (ed.) Interrelationships of Fishes, Academic Press, New York.Google Scholar
  35. Strong, W.R., Jr. 1989. Behavioral ecology of horn sharks, Heterodontus francisci, at Santa Catalina Island, California, with emphasis on patterns of space utilization. M.S. Thesis, California State University, Long Beach. 252 pp.Google Scholar
  36. Tanaka, S.K. 1973. Suction feeding by the nurse shark. Copeia 1973: 606–608.Google Scholar
  37. Taylor, L.R., Jr. 1972. A revision of the shark family Heterodontidae (Heterodontiformes, Selachii). Doctoral Dissertation, University of California, San Diego. 176 pp.Google Scholar
  38. Tricas, T.C. & J.E. McCosker. 1984. Predatory behavior of the white shark (Carcharodon carcharias), with notes on its biology. Proc. Calif. Acad. Sci. 43: 221–238.Google Scholar
  39. Van Damme, J. & P. Aerts. 1997. Kinematics and functional morphology of aquatic feeding in Australian snake-necked turtles (Pleurodira; Chelodina). J. Morph. 233: 113–125.Google Scholar
  40. Wainwright, P.C. 1986. Motor correlates of learning behaviour: feeding on novel prey by pumpkinseed sunfish (Lepomis gibbosus). J. Exp. Biol. 126: 237–247.Google Scholar
  41. Wainwright, P.C. & G.V. Lauder. 1986. Feeding biology of sun-fishes: patterns of variation in the feeding mechanism. J. Linn. Soc. Zool. 88: 217–228.Google Scholar
  42. Wilga, C.D. 1997. Evolution of feeding mechanisms in elasmobranchs: a functional morphological approach. Doctoral Dissertation, University of South Florida, Tampa. 195 pp.Google Scholar
  43. Wilga, C.D. & P.J. Motta. 1998a. Conservation and variation in the feeding mechanism of the spiny dogfish Squalus acanthias. J. Exp. Biol. 201: 1345–1358.Google Scholar
  44. Wilga, C.D. & P.J. Motta. 1998b. Feeding mechanism of the Atlantic guitarfish, Rhinobatus lentiginosus: modulation of kinematic and motor activity. J. Exp. Biol. 201: 3167–3184.Google Scholar
  45. Wu, E.H. 1994. Kinematic analysis of jawprotrusion in orectolobiform sharks: a new mechanism for jaw protrusion in elasmobranchs. J. Morph. 222: 175–190.Google Scholar
  46. Zar, J.H. 1984. Biostatistical analysis, Prentice-Hall, Upper Saddle River. 662 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Margaret A. Edmonds
    • 1
  • Philip J. Motta
    • 1
  • Robert E. Hueter
    • 3
  1. 1.Department of BiologyUniversity of South FloridaTampaU.S.A
  2. 2.ManhattanU.S.A.
  3. 3.Mote Marine LaboratoryCenter for Shark ResearchSarasotaU.S.A

Personalised recommendations