Pharmaceutical Research

, Volume 14, Issue 7, pp 923–929 | Cite as

Chitosans as Absorption Enhancers for Poorly Absorbable Drugs 2: Mechanism of Absorption Enhancement

  • Nicolaas G. M. SchipperEmail author
  • Susanne Olsson
  • Janet A. Hoogstraate
  • Albertus G. deBoer
  • Kjell M. Vårum
  • Per Artursson


Purpose. It has recently been shown that the absorption enhancing and toxic effects of chitosans are dependent on their chemical composition. In this study, the mechanisms underlying these effects were investigated at the cellular level.

Methods. The effects on epithelial cells of chitosans with different chemical composition, absorption enhancing properties and toxicities were studied in Caco-2 monolayers. Chitosan C(l:31) has a low degree of acetylation (DA) (1%) and a low m.w. (31 kD), and displays dose-dependent absorption enhancement and cytotoxicity; chitosan C(35:170) has a higher DA (35%) and a higher m.w. (170 kD), is less dose-dependent in absorption enhancement, and is not cytotoxic. A third non-toxic chitosan C(49:22) with a high DA (49%), a low m.w. (22 kD), and no influence on epithelial permeability was used as control.

Results. C(l:31) and C(35:170) bound tightly to the epithelium. Cellular uptake of the chitosans was not observed. Both chitosans increased apical but not basolateral cell membrane permeability and induced a redistribution of cytoskeletal F-actin and the tight junction protein ZO-1. This resulted in increased paracellular permeability of hydrophilic marker molecules of different molecular weights. Addition of negatively charged heparin inhibited the cellular and the absorption enhancing effects of the chitosans, indicating that these effects are mediated via their positive charges. The onset of the effects of C(35:170) on apical membrane permeability and tight junction structure was much faster than that of C(l:31). C(49:22) did not influence any of the properties of the Caco-2 cell monolayers studied.

Conclusions. The binding and absorption enhancing effects of chitosans on epithelial cells are mediated through their positive charges. The interaction of chitosans with the cell membrane results in a structural reorganisation of tight junction-associated proteins which is followed by enhanced transport through the paracellular pathway.

chitosan Caco-2 absorption enhancer drug transport drug absorption tight junction epithelial permeability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. M. Vårum, M. W. Anthonsen, H. Grasdalen, and O. Smidsrød. Carbohydr. Res. 211:17–23 (1991).Google Scholar
  2. 2.
    A. Domard. Int. J. Biol. Macromol. 9:98–104 (1987).Google Scholar
  3. 3.
    C. J. Brine, P. A. Sandford, and J. P. Zikakis. Advances in Chitin and Chitosan, Elsevier Applied Science, London, 1992.Google Scholar
  4. 4.
    C. M. Lehr, J. A. Bouwstra, E. H. Schacht, and H. E. Junginger, Int. J. Pharm. 78:43–48 (1992).Google Scholar
  5. 5.
    I. Henriksen, K. L. Green, J. D. Smart, G. Smistad, and J. Karlsen. Int. J. Pharm. 145:231–240 (1996).Google Scholar
  6. 6.
    L. Illum, N. F. Farraj, and S. S. Davis. Pharm. Res. 11:1186–1189 (1994).Google Scholar
  7. 7.
    T. J. Aspden, L. Illum, and Ø. Skaugrud. Eur. J. Pharm. Sci. 4:23–31 (1996).Google Scholar
  8. 8.
    N. G. M. Schipper, K. M. Vårum, and P. Artursson. Pharm. Res. 13:1684–1690 (1996).Google Scholar
  9. 9.
    N. Errington, S. E. Harding, K. M. Vårum, and L. Illum. Int. J. Biol. Macromol. 15:113–117 (1993).Google Scholar
  10. 10.
    P. Artursson, T. Lindmark, S. S. Davis, and L. Illum. Pharm. Res. 11:1358–1361 (1994).Google Scholar
  11. 11.
    G. Borchard, H. L. Luessen, A. G. de Boer, J. Verhoef, C. M. Lehr, and H. E. Junginger. J. Control. Rel. 39:131–138 (1996).Google Scholar
  12. 12.
    J. H. Hochman, and P. Artursson, J. Control. Rel. 29:253–267 (1994).Google Scholar
  13. 13.
    M. H. Ottøy, K. M. Vårum, and O. Smidsrød. Carbohydr. Polym. 29:17–24 (1996).Google Scholar
  14. 14.
    P. Artursson, J. Karlsson, G. Ocklind, and N. G. M. Schipper. In: E. Shaw (ed.), Cell culture models of epithelial tissues—a practical approach, IRL., Oxford, 1996, pp. 111–133.Google Scholar
  15. 15.
    M. A. Hurni, A. B. J. Noach, M. C. Blom-Roosemalen, A. G. de Boer, F. Nagelkerke, and D. D. Breimer. J. Pharmacol. Exp. Ther. 267:942–950 (1993).Google Scholar
  16. 16.
    A. Larhed-Wikman, and P. Artursson. Eur. J. Pharm. Sci. 3:171–183 (1995).Google Scholar
  17. 17.
    A. J. Hoogstraate, and H. E. Boddé. Adv. Drug Del. Rev. 12:99–125 (1993).Google Scholar
  18. 18.
    G. S. Manning. J. Chem. Phys. 51:924–933 (1969).Google Scholar
  19. 19.
    R. J. Nordtveit, K. M. Vårum, and O. Smidsrød. Carbohydr. Polym. 29:163–167 (1996).Google Scholar
  20. 20.
    G. T. A. McEwan, M. A. Jepson, B. H. Hirst, and N. L. Simmons. Biochim. Biophys. Acta 1148:51–60 (1993).Google Scholar
  21. 21.
    M. Hammes, and A. Singh. J. Lab. Clin. Med. 123:437–446 (1994).Google Scholar
  22. 22.
    M. Tomita, M. Hayashi, and S. Awazu. J. Pharm. Sci. 85:608–611 (1996).Google Scholar
  23. 23.
    Y. Kimura, T. Lindmark, and P. Artursson. Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 23:423–424 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Nicolaas G. M. Schipper
    • 1
    Email author
  • Susanne Olsson
    • 1
  • Janet A. Hoogstraate
    • 2
  • Albertus G. deBoer
    • 2
  • Kjell M. Vårum
    • 3
  • Per Artursson
    • 1
  1. 1.Department of PharmaceuticsUppsala University, Biomedical CenterUppsalaSweden
  2. 2.LACDRLeiden UniversityLeidenThe Netherlands
  3. 3.Norwegian Biopolymer Laboratory (NOBIPOL), Dept. of BiotechnologyThe Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations