Pharmaceutical Research

, Volume 14, Issue 10, pp 1332–1340 | Cite as

The Effect of β-Turn Structure on the Passive Diffusion of Peptides Across Caco-2 Cell Monolayers

  • Gregory T. Knipp
  • David G. Vander Velde
  • Teruna J. Siahaan
  • Ronald T. Borchardt
Article

Abstract

Purpose. To investigate the relationships between the β-turn structure of a peptide and its passive diffusion across Caco-2 cell monolayers, an in vitro model of the intestinal mucosa.

Methods. Linear hydrophilic peptides (Ac-TyrProXaaZaaVal-NH2; Xaa = Gly, Ile and Zaa = Asp, Asn) and hydrophobic (Ac-YaaPro-XaaIleVal-NH2; Yaa = Tyr, Phe and Xaa = Gly, Ile: and Ac-PhePro-XaaIle-NH2; Xaa = Gly, He) peptides were synthesized and their effective permeability coefficients (Peff) were determined across Caco-2 cell monolayers. The lipophilicities of the peptides were estimated by measuring their partition coefficients (Po/w) between 1-octanol and HBSS. Two-dimensional NMR (2D-NMR) spectroscopy and circular dichroism (CD) spectroscopy was used to determine the solution structures of these model peptides.

Results. Using 2D-NMR spectroscopy and CD spectroscopy, the hydrophilic Gly-containing peptides (Ac-TyrProGlyZaaVal-NH2; Zaa = Asp, Asn) were shown to exhibit a higher degree of β-turn structure in solution than the Ile-containing peptides (Ac-TyrProIleZaaVal-NH2; Zaa = Asp, Asn). CD spectroscopy was used to show that the Gly-containing hydrophobic peptides (Ac-YaaProGlyIleVal-NH2; Yaa = Tyr, Phe: and Ac-PheProGlyIle-NH2) exhibited a higher degree of β-turn structure in solution than the Ile-containing hydrophobic peptides. The Peff values of all four hydrophilic peptides across unperturbed Caco-2 cell monolayers were very low and no statistically significant differences were observed between the Gly- and Ile-containing penta-peptides within either the Asp or Asn series. The Peff values for the hydrophobic Gly-containing peptides were significantly greater than the Peff values determined for their Ile-containing counterparts. The Gly-containing penta- and tetrapeptides in the Phe series, which exhibited high permeation, were shown to be metabolically unstable. In contrast, the Gly- and Ile-containing pentapeptides in the Tyr series and the Ile-containing penta- and tetrapeptides in the Phe series, which exhibited low permeation, were metabolically stable.

Conclusions. Hydrophobic peptides that exhibit significant β-turn structure in solution are more lipophilic as measured by log Po/w and more readily permeate Caco-2 cell monolayers via the transcellular route than hydrophobic peptides that lack this type of solution structure. The ability of these peptides to permeate Caco-2 cell monolayers via the transcellular route also exposed them to metabolism, presumably by cytosolic endopeptidases. Similar secondary structural features in hydrophilic peptides do not appear to sufficiently alter the physicochemical properties fo the peptides so as to alter their paracellular flux through unperturbed Caco-2 cell monolayers.

peptide delivery paracellular diffusion transcellular diffusion solution conformation Caco-2 cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    G. M. Pauletti, S. Gangwar, G. T. Knipp, M. M. Nerurkar, F. W. Okumu, K. Tamura, T. J. Siahaan, and R. T. Borchardt. J. Controlled Release 41:3-17 (1996).Google Scholar
  2. 2.
    G. M. Pauletti, S. Gangwar, T. J. Siahaan, J. Aubé, and R. T. Borchardt. Adv. Drug Del. Rev. (in press).Google Scholar
  3. 3.
    G. M. Pauletti, F. W. Okumu, and R. T. Borchardt. Pharm. Res. 14:164-168 (1997).PubMedGoogle Scholar
  4. 4.
    P. S. Burton, R. A. Conradi, N. F. H. Ho, A. R. Hilgers, and R. T. Borchardt. J. Pharm. Sci. 85:1336-1340 (1996).PubMedGoogle Scholar
  5. 5.
    G. M. Pauletti, S. Gangwar, B. Wang, and R. T. Borchardt. Pharm. Res. 14:11-17 (1997).PubMedGoogle Scholar
  6. 6.
    G. M. Pauletti, S. Gangwar, F. W. Okumu, T. J. Siahaan, V. J. Stella, and R. T. Borchardt. Pharm. Res. 13:1615-1623 (1996).PubMedGoogle Scholar
  7. 7.
    S. Gangwar, S. D. S. Jois, T. J. Siahaan, D. G. Vander Velde, V. J. Stella, and R. T. Borchardt. Pharm. Res. 13:1657-1662 (1996).PubMedGoogle Scholar
  8. 8.
    S. Gangwar, G. M. Pauletti, T. J. Siahaan, V. J. Stella, and R. T. Borchardt. J. Org. Chem. 62:1356-1362 (1997).Google Scholar
  9. 9.
    B. Wang, S. Gangwar, G. M. Pauletti, T. J. Siahaan, and R. T. Borchardt. J. Org. Chem. 62:1363-1367 (1997).Google Scholar
  10. 10.
    F. W. Okumu, G. M. Pauletti, D. G. Vander Velde, T. J. Siahaan, and R. T. Borchardt. Pharm. Res. 14:169-175 (1997).PubMedGoogle Scholar
  11. 11.
    H. J. Dyson, M. Rance, R. A. Houghten, R. A. Lerner, and P. Wright. J. Mol. Biol. 201:161-200 (1988).PubMedGoogle Scholar
  12. 12.
    Y. J. Yao and S. F. Y. Li. J. Chrom. Sci. 32:117-120 (1994).Google Scholar
  13. 13.
    J. Fogh, J. M. Fogh, and T. Ofreo. J. Nat. Cancer Inst. 59:221-226 (1977).PubMedGoogle Scholar
  14. 14.
    G. T. Knipp, N. F. H. Ho, C. L. Barsuhn, and R. T. Borchardt. J. Pharm. Sci. 86 (1997). In press.Google Scholar
  15. 15.
    A. Perczel and M. Hollósi. in G. D. Fasman (ed.), Circular Dichroism and the Conformational Analysis of Biomolecules, Plenum Press, New York; 1996, pp. 285-380.Google Scholar
  16. 16.
    A. Adson, T. J. Raub, P. S. Burton, C. L. Barsuhn, A. R. Hilgers, K. L. Audus, and N. F. H. Ho. J. Pharm. Sci. 83:1529-1536 (1994).PubMedGoogle Scholar
  17. 17.
    P. S. Burton, R. A. Conradi, and A. R. Hilgers. Adv. Drug Del. Rev. 7:365-386 (1991).Google Scholar
  18. 18.
    P. Artursson and C. Magnusson. J. Pharm. Sci. 79:595-600 (1990).PubMedGoogle Scholar
  19. 19.
    L.-S. Gan, P.-H. Hsyu, J. F. Pritchard, and D. Thakker. Pharm. Res. 10:1722-1725 (1993).PubMedGoogle Scholar
  20. 20.
    D. Eisenberg, M. Wesson, and W. Wilcox. in G. D. Fasman (Ed.), Prediction of Protein Structure and the Principles of Protein Conformation, Plenum Press, New York; 1996, pp. 635-646.Google Scholar
  21. 21.
    P. S. Burton, R. A. Conradi, A. R. Hilgers, N. F. H. Ho, and L. L. Maggiora. J. Controlled Release 19:87-98 (1992).Google Scholar
  22. 22.
    F. Macquaire, F. Baleux, E. Giaccobi, T. Huynh-Dinh, J.-M. Neumann, and A. Sanson. Biochemistry 31:2576-2582 (1992).PubMedGoogle Scholar
  23. 23.
    A. Milon, T. Miyazawa, and T. Higashijima. Biochemistry 29:65-75 (1990).PubMedGoogle Scholar
  24. 24.
    J. P. F. Bai. Int. J. Pharm. 112:133-141 (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Gregory T. Knipp
    • 1
  • David G. Vander Velde
    • 1
  • Teruna J. Siahaan
    • 1
  • Ronald T. Borchardt
    • 1
  1. 1.Department of Pharmaceutical ChemistryUniversity of KansasLawrence

Personalised recommendations