Advertisement

Pharmaceutical Research

, Volume 14, Issue 6, pp 730–735 | Cite as

The Stabilization and Encapsulation of Human Growth Hormone into Biodegradable Microspheres

  • OluFunmi L. Johnson
  • Warren Jaworowicz
  • Jeffrey L. Cleland
  • Leonie Bailey
  • Margarita Charnis
  • Eileen Duenas
  • Chichih Wu
  • Douglas Shepard
  • Sheila Magil
  • Thomas Last
  • Andrew J. S. Jones
  • Scott D. Putney
Article

Abstract

Purpose. To produce and evaluate sustained-acting formulations of recombinant human growth hormone (rhGH) made by a novel microencapsulation process.

Methods. The protein was stabilized by forming an insoluble complex with zinc and encapsulated into microspheres of poly (D,L-lactide co-glycolide) (PLGA) which differed in polymer molecular weight (8−3 1kD), polymer end group, and zinc content. The encapsulation procedure was cryogenic, non-aqueous, and did not utilize surfactants or emulsification. The rhGH extracted from each of these microsphere formulations was analyzed by size-exclusion, ion-exchange and reversed-phase chromatography, SDS-polyacrylamide gel electrophoresis, peptide mapping, and cell proliferation of a cell line expressing the hGH receptor. In addition, the in vivorelease profile was determined after subcutaneous administration of the microspheres to rats and juvenile rhesus monkeys.

Results. Protein and bioactivity analyses of the rhGH extracted from three different microsphere formulations showed that the encapsulated protein was unaltered relative to the protein before encapsulation. In vivo, microsphere administration to rats or monkeys induced elevated levels of serum rhGH for up to one month, more than 20-fold longer than was induced by the same amount of protein injected subcutaneously as a solution. The rate of protein release differed between the three microsphere formulations and was determined by the molecular weight and hydrophobicity of the PLGA. The serum rhGH profile, after three sequential monthly doses of the one formulation examined, was reproducible and showed no dose accumulation.

Conclusions. Using a novel process, rhGH can be stabilized and encapsulated in a solid state into PLGA microspheres and released with unaltered properties at different rates.

sustained-release microencapsulation microspheres human growth hormone poly (lactide co-glycolide) PLGA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. Langer. Science 249:1527–1533 (1990).PubMedGoogle Scholar
  2. 2.
    H. V. Maulding. J. Controlled Release 6:167–176 (1987).Google Scholar
  3. 3.
    K. L. Smith, M. E. Schimpf, and K. E. Thompson. Advanced Drug Delivery Reviews 4:343–357 (1990).Google Scholar
  4. 4.
    S. J. Holland, B. J. Tighe, and P. L. Gould. J. Controlled Release 4:155–180 (1986).Google Scholar
  5. 5.
    D. H. Lewis. In M. Chasin, and R. Langer, Eds, in Biodegredable Polymers as Drug Delivery Systems Marcel Dekker, New York, 1990 pp. 1–41.Google Scholar
  6. 6.
    D. R. Cowsar, T. R. Tice, R. M. Gilley, and J. P. English. Methods in Enzymology 112:101–116 (1985).PubMedGoogle Scholar
  7. 7.
    L. M. Sanders, B. A. Kell, G. I. McRae, and G. W. Whitehead. J. Pharm. Sci. 75:356–360 (1986).PubMedGoogle Scholar
  8. 8.
    Y. Ogawa, M. Yamamoto, H. Okada, T. Yashiki, and T. Shimamoto. Chem. Pharm. Bull. 5:1095–1103 (1988).Google Scholar
  9. 9.
    Y. Ogawa, H. Okada, M. Yamamota, and T. Shimamoto. Chem. Pharm. Bull. 36:2576–2581 (1988).PubMedGoogle Scholar
  10. 10.
    P. E. Austin, K. A. Dunn, K. Elly-Cofield, C. K. Brown, W. A. Wooden, and J. F. Bradfield. Ann. Emerg. Med. 25:328–330 (1995).PubMedGoogle Scholar
  11. 11.
    H. Pihlajamaki, O. Bostman, E. Hirvensalo, P. Tormala, and P. Rokkanen. J. Bone Joint Surg. 74:853–857 (1992).Google Scholar
  12. 12.
    G. Winde, B. Reers, H. Nottberg, T. Berns, J. Meyer, and H. Bunte. Eur. J. Surg. 159:301–305 (1993).PubMedGoogle Scholar
  13. 13.
    R. Pearlman, T. A. Bewley. In Y. J. Wang, and R. Pearlman, Eds, in Stability and Characterization of Protein and Peptide Drugs: Case Histories Plenum Press, New York, 1993 pp. 1–58.Google Scholar
  14. 14.
    W. H. Daughaday and S. Harvey. In s. Harvey, C. G. Scanes, and W. H. Daughaday, Eds, in Growth Hormone CRC Press, Boca Raton, 1995 pp. 475–504.Google Scholar
  15. 15.
    J. O. Jorgensen, N. Moller, T. Lauritzen, and J. S. Christiansen. J. Clin. Endocrinol. Metab. 70:1616–1623 (1990).PubMedGoogle Scholar
  16. 16.
    T. Laursen, J. O. Jorgensen, and J. S. Christiansen. Endocrinol. Metab. 1:33–40 (1994).Google Scholar
  17. 17.
    T. Laursen, O. L. Jorgensen, G. Jakobsen, B. L. Hansen, and J. S. Christiansen. J. Clin. Endocrinol. and Metab. 80:2410–2418 (1995).Google Scholar
  18. 18.
    H. Tauber, H. De Bouet du Portal, B. Sallerin-Caute, P. Rochiccioli, and R. Bastide. J. Clin. Endocrinol. and Metab. 76:1135–1139 (1993).Google Scholar
  19. 19.
    W. Gombotz, M. Healy, L. Brown. U.S. Patent 5019400 (1991).Google Scholar
  20. 20.
    G. Teshima, J. T. Stults, V. Ling, and E. Canova-Davis. J. Biol. Chem. 266:13544–13547 (1991).PubMedGoogle Scholar
  21. 21.
    G. Teshima and E. Canova-Davis. J. of Chromatog. 625:207–215 (1992).Google Scholar
  22. 22.
    J. E. Battersby, W. S. Hancock, E. Canova-Davis, J. Oeswein, and B. O'Connor. Int. J. Peptide Protein Res. 44:215–222 (1994).Google Scholar
  23. 23.
    J. E. Battersby, V. R. Mukku, R. G. Clark, and W. S. Hancock. Anal. Chem. 67:447–455 (1995).PubMedGoogle Scholar
  24. 24.
    E. Canova-Davis, I. P. Baldonado, J. A. Moore, C. G. Rudman, W. F. Bennett, and W. S. Hancock. Int. J. Peptide Protein Res. 35:17–24 (1990).Google Scholar
  25. 25.
    E. C. Roswall, V. R. Mukku, A. B. Chen, E. H. Hoff, H. Chu, P. A. McKay, K. C. Olson, J. E. Battersby, R. L. Gehant, A. Meunier, and R. L. Garnick. Biologicals 24:25–39 (1996).CrossRefPubMedGoogle Scholar
  26. 26.
    O. Thorlacius-Ussing. Neuroendocrinology 45:233–242 (1987).PubMedGoogle Scholar
  27. 27.
    B. C. Cunningham, M. G. Mulkerrin, and J. A. Wells. Science 253:545–548 (1991).PubMedGoogle Scholar
  28. 28.
    S. P. Schwendeman, M. Cardamone, M. R. Brandon, A. Klibanov, and R. Langer. In S. Cohen, H. Bernstein, Eds, in Microspheresl Microparticles-Characterization and Pharmaceutical Application Marcel Dekker Inc., New York, 1996 pp. 1–49.Google Scholar
  29. 29.
    S. Cohen, T. Yoshioka, M. Lucarelii, L. H. Hwang, and R. Langer. Pharm. Research 8:713–720 (1991).CrossRefGoogle Scholar
  30. 30.
    S. S. Shah, Y. Cha, and C. G. Pitt. J. Controlled Release 18:261–270 (1992).CrossRefGoogle Scholar
  31. 31.
    O. L. Johnson, J. L. Cleland, H. J. Lee, M. Charnis, E. Duenas, W. Jaworowicz, D. Shepard, A. Shahzamani, A. J. S. Jones, and S. D. Putney. Nature Medicine 2:795–799 (1996).CrossRefPubMedGoogle Scholar
  32. 32.
    J. L. Cleland, M. F. Powell, A. Lim, L. Barron, P. W. Berman, D. J. Eastman, J. H. Nunberg, T. Wrin, and J. C. Vennari. AIDS and Human Retroviruses 10:S21–S25 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • OluFunmi L. Johnson
    • 1
  • Warren Jaworowicz
    • 1
  • Jeffrey L. Cleland
    • 2
  • Leonie Bailey
    • 1
  • Margarita Charnis
    • 3
  • Eileen Duenas
    • 2
  • Chichih Wu
    • 1
  • Douglas Shepard
    • 1
  • Sheila Magil
    • 1
  • Thomas Last
    • 1
  • Andrew J. S. Jones
    • 2
  • Scott D. Putney
    • 1
  1. 1.Alkermes, Inc.Cambridge
  2. 2.Genentech, Inc.South San Francisco
  3. 3.Alkermes, Inc.Cambridge

Personalised recommendations