Advertisement

Biodegradation

, Volume 12, Issue 2, pp 81–103 | Cite as

Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene

  • Daniel J. Arp
  • Chris M. Yeager
  • Michael R. Hyman
Article

Abstract

Cometabolism recognizes that microorganisms can transform non-growth-supporting substrates. The term "cometabolism'' was first introduced over 30 years ago and has been redefined, criticized, and used widely ever since. In this review we have examined the aerobic cometabolism of chlorinated solvents, with a particular emphasis on the cometabolism of trichloroethylene. Monooxygenases or dioxygenases with relaxed substrate ranges initiate these transformations. The physiological role of the oxygenases is to initiate the metabolism of growth-supporting substrates (e.g., methane, propane, butane, toluene, ethylene, and ammonia). Diverse enzymes catalyze these oxidative reactions with chlorinated solvents. Synthesis of most of these enzymes is induced by the presence of the growth-supporting substrate and is largely regulated at the level of gene transcription. The genes that code for a given oxygenase are usually clustered together in a single operon and often share homology with counterparts that code for the subunits of related oxygenases in other bacteria. During cometabolism the growth-supporting and non-growth-supporting substrates can both bind to the oxygenase. Transformation of chlorinated solvents by these enzymes presents the cell with a new set of compounds. Some of these compounds are toxic to the cells, others are stable products that are expelled from the cell, and in a few cases the cells utilize the products.The combined effects of cometabolism can have a profound influence on a cell.

bioremediation cometabolism cooxidation methane monooxygenase toluene monooxygenase trichloroethylene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander M (1967) The breakdown of pesticides in soils. American Association for the Advancement of Science, Washington D.C.Google Scholar
  2. Alexander M (1994) Biodegradation and bioremediation. Academic Press, Inc., San DiegoGoogle Scholar
  3. Alvarez-Cohen L & McCarty PL (1991a) A cometabolic biotransformation model for halogenated aliphatic compounds exhibiting product toxicity. Environ. Sci. Technol. 25: 1381-1387Google Scholar
  4. Alvarez-Cohen L & McCarty PL (1991b) Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture. Appl. Environ. Microbiol. 57: 228-235Google Scholar
  5. Ampe F, Leonard D & Lindley ND (1998) Repression of phenol catabolism by organic acids in Ralstonia eutropha. Appl. Environ. Microbiol. 64: 1-6Google Scholar
  6. Arciero D, Vannelli T, Logan M & Hooper AB (1989) Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea. Biochem. Biophys. Res. Commun. 159: 640-643Google Scholar
  7. Arenghi FL, Pinti M, Galli E & Barbieri P (1999) Identification of the Pseudomonas stutzeri OX1 toluene-o-xylene monooxygenase regulatory gene (touR) and of its cognate promoter. Appl. Environ. Microbiol. 65: 4057-4063Google Scholar
  8. Arp DJ, Hommes NG, Hyman MR, Juliette LY, Keener WK, Russell SA & Sayavedra-Soto LA (1996) Ammonia monooxygenase from Nitrosomonas europaea. In: M. E. Lidstrom & F. R. Tabita (Eds), Microbial growth on C1 compounds, pp. 159-166. Kluwer Academic Publishers, Dordrecht/Boston/LondonGoogle Scholar
  9. Ayoubi PJ & Harker AR (1998) Whole-cell kinetics of trichloroethylene degradation by phenol hydroxylase in a Ralstonia eutropha JMP134 derivative. Appl. Environ. Microbiol. 64: 4353-4356Google Scholar
  10. Bedard C & Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH+4, and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev. 53: 68-84Google Scholar
  11. Berendes F, Sabarth N, Averhoff B & Gottschalk G (1998) Construction and use of an ipb DNA module to generate Pseudomonas strains with constitutive trichloroethylene and isopropylbenzene oxidation activiy. Appl. Environ. Microbiol. 64: 2454-2462Google Scholar
  12. Braus-Stromeyer SA, Hermann R, Cook AM & Leisinger T (1993) Dichloromethane as the sole carbon source for an acetogenic mixed culture and isolation of a fermentative, dichloromethanedegrading bacterium. Appl. Environ. Microbiol. 59: 3790-3797Google Scholar
  13. Burrows KJ, Cornish A, Scott D & Higgins IJ (1984) Substrate specificities of the soluble and particulate methane monooxygenases of Methylosinus trichosporiumOB3b. J. Gen. Microbiol. 130: 3327-3333Google Scholar
  14. Byrne AM, Kukor JJ & Olsen RH (1995) Sequence analysis of the gene cluster encoding toluene-3-monooxygenase from Pseudomonas pickettii PKO1. Gene 154: 65-70Google Scholar
  15. Byrne AM & Olsen RH (1996) Cascade regulation of the toluene-3-monooxygenase operon (tbuA1UBVA2C) of Burkholderia pickettii PKO1: role of the tbuA1 promoter (PtbuA1) in the expression of its cognate activator, TbuT. J. Bacteriol. 178: 6327-6337Google Scholar
  16. Chauhan S, Paola B & Wood TK (1998) Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/oxylene monooxygenase from Pseudomonas stutzeri OX1. Appl. Environ. Microbiol. 64: 3023-3024Google Scholar
  17. Chu KH & Alvarez-Cohen L (1999) Evaluation of toxic effects of aeration and trichloroethylene oxidation on methanotrophic bacteria grown with different nitrogen sources. Appl. Environ. Microbiol. 65: 766-772Google Scholar
  18. Colby J, Stirling DI & Dalton H (1977) The soluble methane monooxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165: 395-402Google Scholar
  19. Criddle CS (1993) The kinetics of cometabolism. Biotechnol. Bioeng. 41: 1048-1056Google Scholar
  20. Dagley S & Patel MD (1957) Oxidation of p-cresol and related compounds by a Pseudomonas. Biochem. J. 66: 227-233Google Scholar
  21. Dalton H & Stirling DI (1982) Co-metabolism. Phil Trans. R. Soc. Lond. B. 297: 481-496Google Scholar
  22. De Klerk H & Van Der Linden AC (1974) Bacterial degradation of cyclohexane. Participation of a co-oxidation reaction. Antonie van Leeuwenhoek 40: 7-15Google Scholar
  23. Delgado D & Ramos J-L (1994) Genetic evidence for activation of the positive transcriptional regulator, XylR, a member of the NtrC family of regulators, by effector binding. J. Biol. Chem. 269: 8059-8062Google Scholar
  24. DiSpirito AA, Gulledge J, Shiemke AK, Murrel JC, Lidstrom ME & Krema CL (1992) Trichloroethylene oxidation by the membraneassociated methane monooxygenase in Type I, Type II and Type X methanotrophs. Biodegradation 2: 151-164Google Scholar
  25. Dolan ME & McCarty PL (1995) Methanotrophic chloroethene transformation capacities and 1,1 dichloroethylene transformation product toxicity. Environ. Sci. Technol. 29: 2741-2747Google Scholar
  26. Duetz WA, Marques S, Wind B, Ramos J-L & Van Andel JG (1996) Catabolite repression of the toluene degradation pathway in Pseudomonas putida harboring pWWO under various conditions of nutrient limitation in chemostat culture. Appl. Environ. Microbiol. 62: 601-606Google Scholar
  27. Elango N, Radhakrishnan R, Froland WA, Wallar BJ, Earhart CA, Lipscomb JD & Ohlendorf DH (1997) Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b. Protein Sci. 6: 556-568Google Scholar
  28. Ely RL, Hyman MR, Arp DJ, Guenther RB & Williamson KJ (1995a) A cometabolic kinetics model incorporating enzyme inhibition, inactivation and recovery: II Trichloroethylene degradation experiments. Biotechnol. Bioeng. 46: 232-245Google Scholar
  29. Ely RL, Williamson KJ, Guenther RB, Hyman MR & Arp DJ (1995b) A cometabolic kinetics model incorporating enzyme inhibition, inactivation and recovery: I Model development, analysis and testing. Biotechnol. Bioeng. 46: 218-231Google Scholar
  30. Ensign SA, Hyman MR & Arp DJ (1992) Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylenegrown Xanthobacter strain. Appl. Environ. Microbiol. 58: 3038-3046Google Scholar
  31. Ensign SA, Hyman MR & Arp DJ (1993) In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper. J. Bacteriol. 175: 1971-1980Google Scholar
  32. Folsom BR & Chapman PJ (1991) Performance characterization of a model bioreactor for the biodegradation of trichloroethylene by Pseudomonas cepacia G4. Appl. Environ. Microbiol. 57: 1602-1608Google Scholar
  33. Folsom BR, Chapman PJ & Pritchard PH (1990) Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl. Environ. Microbiol. 56: 1279-1285Google Scholar
  34. Foster JW (1962) Bacterial oxidation of hydrocarbons. Academic Press Inc, New YorkGoogle Scholar
  35. Fox BG, Borneman JG, Wackett LP & Lipscomb JD (1990) Haloalkene oxidation by soluble methane monooxygenase from Methylosinus trichosporium Ob3b: mechanistic and environmental implications. Biochemistry 29: 6419-6427Google Scholar
  36. Fox BG, Froland WA, Dege JE & Lipscomb JD (1989) Methane monooxygenase from Methylosinus trichosporium OB3b. Puri-fication and properties of a three-component system with high specific activity from a type II methanotroph. J. Biol. Chem. 264: 10023-10033Google Scholar
  37. Fox BG, Shanklin J, Ai JY, Loehr TM & Sanders-Loehr J (1994) Resonance raman evidence for an Fe-O-Fe center in stearoyl-ACP desaturase. Primary sequence identity with other diiron-oxo proteins. Biochemistry 33: 12776-12786Google Scholar
  38. Fries MR, Forney LJ & Tiedje JM (1997) Phenol-and toluenedegrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred. Appl. Environ. Microbiol. 63: 1523-1530Google Scholar
  39. Furukawa K, Hirose J, Hayashida S & Nakamura K (1994) Efficient degradation of trichloroethylene by a hybrid aromatic ring dioxygenase. J. Bacteriol. 176: 2121-2123Google Scholar
  40. Gallagher SC, Cammack R & Dalton H (1997) Alkene monooxygenase from Nocardia corallina B-276 is a member of the class of dinuclear iron proteins capable of stereospecific epoxygenation reactions. Eur. J. Biochem. 247: 635-641Google Scholar
  41. Gilbert B, McDonald IR, Finch R, Stafford GP, Nielsen AK & Murrell JC (2000) Molecular analysis of the pmo (particulate methane monooxygenase) operons from two type II methanotrophs. Appl. Environ. Microbiol. 66: 966-975Google Scholar
  42. Gisi D, Willi L, Traber H, Leisinger T & Vuilleumier S (1998) Effects of bacterial host and dichloromethane dehalogenase on the competitiveness of methylotrophic bacteria growing with dichloromethane. Appl. Environ. Microbiol. 64: 1194-1202Google Scholar
  43. Green J & Dalton H (1989) Substrate specificity of soluble methane monooxygenase. Mechanistic implications. J. Biol. Chem. 264: 17698-17703Google Scholar
  44. Habets-Crützen, H. AQ & de Bont JAM (1985) Inactivation of alkene oxidation by epoxides in alkene and alkane-grown bacteria. Appl. Microbiol. Technol. 22: 428-433Google Scholar
  45. Harker AR & Kim Y (1990) Trichloroethylene degradation by two independent aromatic degrading pathways in Alcaligenes eutrophus JMP134 Appl. Environ. Microbiol. 56: 1179-1181Google Scholar
  46. Hartmans S, de Bont JAM & Harder W (1989) Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microbiol. Rev. 62: 235-264Google Scholar
  47. Hartmans S, de Bont JAM, Tramper J & Luyben DCAM (1985) Bacterial degradation of vinyl chloride. Biotechnol. Lett. 7: 383-388Google Scholar
  48. Hartmans S & de Bont JAM (1992) Aerobic vinyl chloride metabolism in Mycobacterium aurum L1. Appl. Environ. Microbiol. 58: 1220-1226Google Scholar
  49. Heald S & Jenkins RO (1994) Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida. Appl. Environ. Microbiol. 60: 4634-4637Google Scholar
  50. Higgins IJ, Best DJ & Hammond RC (1980) New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential. Nature 286: 561-564Google Scholar
  51. Hopkins GD & McCarty PL (1995) Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as primary substrates. Environ. Sci. Technol. 29: 1628-1637Google Scholar
  52. Hulbert MH & Krawiec S (1977) Cometabolism: A critique. J. Theor. Biol. 69: 287-291Google Scholar
  53. Hyman MR, Russell SA, Ely RL, Williamson KJ & Arp DJ (1995) Inhibition, inactivation, and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Appl. Environ. Microbiol. 61: 1480-1487Google Scholar
  54. Hyman MR & Wood PM (1985) Suicidal inactivation and labelling of ammonia monooxygenase by acetylene. Biochem. J. 227: 719-725Google Scholar
  55. Jensen HL (1957) Decomposition of chloro-substituted aliphatic acids by soil bacteria. Can. J. Microbiol. 3: 151-164Google Scholar
  56. Jensen HL (1963) Carbon nutrition of somemicroorganisms decomposing halogen-substituted aliphatic acids. Acta. Agric. Scand. 13: 404-412Google Scholar
  57. Keener WK & Arp DJ (1993) Kinetic studies of ammonia monooxygenase inhibition in Nitrosomonas europaea by hydrocarbons and halogenated hydrocarbons in an optimized whole cell assay. Appl. Environ. Microbiol. 59: 2501-2510Google Scholar
  58. Keener WK, Russell SA & Arp DJ (1998) Kinetic characterization of the inactivation of ammonia monooxygenase in Nitrosomonas europaea by alkyne, aniline and cyclopropane derivatives. Biochim. Biophys. Acta 1388: 373-385Google Scholar
  59. Klotz MG, Alzerreca J & Norton JM (1997) A gene encoding a membrane protein exists upstream of the amoA/amoB genes in ammonia oxidizing bacteria: a third member of the amo operon? FEMS Microbiol. Lett. 150: 65-73Google Scholar
  60. Lange CC & Wackett LP (1997) Oxidation of aliphatic olefins by toluene dioxygenase: Enzyme rates and product identification. J. Bacteriol. 179: 3858-3865Google Scholar
  61. Lange CC, Wackett LP, Minton KW & Daly MJ (1998) Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat. Biotechnol. 16: 929-933Google Scholar
  62. Leadbetter ER & Foster JW (1959) Oxidation products formed from gaseous alkanes by the bacterium Pseudomonas methanica. Arch. Biochem. Biophys. 82: 491-492Google Scholar
  63. Leadbetter ER & Foster JW (1960) Bacterial oxidation of gaseous alkanes. Arch. Mikrobiol. 35: 92-104Google Scholar
  64. Leahy JG, Byrne AM & Olsen RH (1996) Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria. Appl. Environ. Microbiol. 62: 825-833Google Scholar
  65. Li SY & Wackett LP (1992) Trichloroethylene oxidation by toluene dioxygenase. Biochem. Biophys. Res. Comm. 185: 443-451Google Scholar
  66. Lipscomb JD (1994) Biochemistry of the soluble methane monooxygenase. Annu. Rev. Microbiol. 48: 371-399Google Scholar
  67. Lontoh S, DiSpirito AA & Semrau JD (1999) Dichloromethane and trichloroethylene inhibition of methane oxidation by the membrane-associated methane monooxygenase of Methylosinus trichosporium OB3b. Arch. Microbiol. 171: 301-308Google Scholar
  68. Mars AE, Houwing J, Dolfing J & Janssen DB (1996) Degradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch culture. Appl. Environ. Microbiol. 62: 886-891Google Scholar
  69. McClay K, Streger SH & Steffan RJ (1995) Induction of toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 by chlorinated solvents and alkanes. Appl. Environ. Microbiol 61: 3479-3481Google Scholar
  70. McTavish H, Fuchs JA & Hooper AB (1993) Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. J. Bacteriol. 175: 2436-2444Google Scholar
  71. Miura A & Dalton H (1995) Purification and characterization of the alkene monooxygenase from Nocardia corallina B-276. Biosci. Biotechnol. Biochem. 59: 853-859Google Scholar
  72. Murrell JC (1992) Genetics and molecular biology of methanotrophs. FEMS Microbiol. Rev. 88: 233-248Google Scholar
  73. Nesheim JC & Lipscomb JD (1996) Large isotope effects in methane oxidation catalyzed by methane monooxygenase: Evidence for C-H bond cleavage in a reaction cycle intermediate. Biochemistry 35: 10240-10247Google Scholar
  74. Newman LM & Wackett LP (1991) Fate of 2,2,2-trichloroacetaldehyde (chloral hydrate) produced during trichloroethylene oxidation by methanotrophs. Appl. Environ. Microbiol. 57: 2399-2402Google Scholar
  75. Newman LM & Wackett LP (1995) Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4. Biochem. 34: 14066-14076Google Scholar
  76. Newman LM & Wackett LP (1997) Trichloroethylene oxidation by purified toluene 2-monooxygenase: products, kinetics, and turnover-dependent inactivation. J. Bacteriol. 179: 90-96Google Scholar
  77. Ng LC, Poh CL & Shingler V (1995) Aromatic effector activation of the NtrC-like transcriptional regulator PhhR limits the catabolic potential of the (methyl)phenol degradative pathway it controls. J. Bacteriol. 177: 1485-1490Google Scholar
  78. Nguyen H-HT, Elliott SJ, Yip JH-K & Chan SI (1998) The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme: Isolation and characterization. J. Biol. Chem. 273: 7957-7966Google Scholar
  79. Nielson AK, Gerdes K, Degn H & Murrell JC (1996) Regulation of bacterial methane oxidation: transcription of the soluble methane monooxygenase operon of Methylococcus capsulatus (Bath) is repressed by copper ions. Microbiol. 142: 1289-1296Google Scholar
  80. Nielson AK, Gerdes K & Murrell JC (1997) Copper-dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium. Mol. Microbiol. 25: 399-409Google Scholar
  81. Nordlund P, Dalton H & Eklund H (1992) The active site structure of methane monooxygenase is closely related to the binuclear iron center of ribonucleotide reductase. FEBS Lett. 307: 257-262Google Scholar
  82. Oldenhuis R, Oedzes JY, van der Waarde JJ & Janssen DB (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. Appl. Environ. Microbiol. 55: 2819-2826Google Scholar
  83. Oldenhuis R, Vink RLJM, Janssen DB & Witholt B (1989) Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl. Environ. Microbiol. 55: 2819-2826Google Scholar
  84. Pavel H, Forsman M & Shingler V (1994) An aromatic-effector specificity mutant of the transcriptional regulator DmpR overcomes the growth constraints of Pseudomonas sp. strain CF6OO on para-substituted methylphenols. J. Bacteriol. 176: 7550-7557Google Scholar
  85. Pikus JD, Studts JM, Achim C, Kauffmann KE, Munck E, Steffan RJ, McClay K & Fox BG (1996) Recombinant toluene-4-monooxygenase: Catalytic and Mossbauer studies of the purified diiron and rieske components of a four-protein complex. Biochemistry 35: 9106-9119Google Scholar
  86. Pikus JD, Studts JM, McClay K, Steffan RJ & Fox BG (1997) Changes in the regiospecificity of aromatic hydroxylation produced by active site engineering in the diiron enzyme toluene 4-monooxygenase. Biochemistry 36: 9283-9289Google Scholar
  87. Prior SD & Dalton H (1985) Acetylene as a suicide substrate and active site probe for methane monooxygenase from Methylococcus capsulatus (Bath). FEMS Microbiol. Lett. 29: 105-109Google Scholar
  88. Ramos J-L, Marques S & Timmis KN (1997) Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Annu. Rev. Microbiol. 51: 341-373Google Scholar
  89. Rasche ME, Hyman MR & Arp DJ (1991) Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea-Cometabolic Inactivation of Ammonia Monooxygenase and Substrate Specificity. Appl. Environ. Microbiol. 57: 2986-2994Google Scholar
  90. Robertson JB, Spain JC, Haddock JD & Gibson DT (1992) Oxidation of nitrotoluenes by toluene dioxygenase-evidence for a monooxygenase reaction. Appl. Environ. Microbiol. 58: 2643-2648Google Scholar
  91. Rosenzweig AC, Frederick CA, Lippard SJ & Nordlund P (1993) Crystal structure of a bacterial Non-Haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366: 537-543Google Scholar
  92. Saeki H, Akira M, Furuhashi K, Averhoff B & Gottschalk G (1999) Degradation of trichloroethylene by a linear plasmid-encoded alkene monooxygenase in Rhodococcus corallinus (Nocardia corallina) B-276. Microbiol. 145: 1721-1730Google Scholar
  93. Semrau JD, Chistoserdov A, Lebron J, Costello A, Davagnino J, Kenna E, Holmes AJ, Finch R, Murrell JC & Lidstrom ME (1995) Particulate methane monooxygenase genes in methanotrophs. J. Bacteriol. 177: 3071-3079Google Scholar
  94. Shigematsu T, Hanada S, Eguchi M, Kamagata Y, Kanagawa T & Kurane R (1999) Soluble methane monooxygenase gene clusters from trichloroethylene-degrading Methylosinus sp. strains and detection of methanotrophs during in situ bioremediation. Appl. Environ. Microbiol. 65: 5198-5206Google Scholar
  95. Small FJ & Ensign SA (1997) Alkene monooxygenase from Xanthobacter strain Py2. J. Biol. Chem. 272: 24913-24920Google Scholar
  96. Spain JC, Zylstra GJ, Blake CK & Gibson DT (1989) Monohydroxylation of phenol and 2,5-dichlorophenol by toluene dioxygenase in Pseudomonas putida F1. Appl. Environ. Microbiol. 55: 2648-2652Google Scholar
  97. Stanley SH, Prior DJ, Leak DJ & Dalton H (1983) Copper stress underlines the fundamental change in intracellular location of methane mono-oxygenase in methane utilizing organisms: studies in batch and continuous cultures. Biotechnol. Lett. 5: 487-492Google Scholar
  98. Stirling DI, Colby J & Dalton H (1979) A comparison of the substrate and electron-donor specificities of the methane monooxygenase from three strains of methane-oxidizing bacteria. Biochem. J. 177: 361-364Google Scholar
  99. Stirling DI & Dalton H (1979) Fortuitous oxidation and cometabolism of various carbon compounds by whole-cell suspensions of Methylococcus capsulatus (Bath) FEMS. Microbiol. Lett. 5: 315-318Google Scholar
  100. Subramanian V, Liu T-N, Yeh W-K, Narro M & Gibson DT (1981) Purification and properties of NADH-FerredoxinTOL Reductase: A component of toluene dioxygenase from Pseudomonas putida. J. Biol. Chem 256: 2723-2730Google Scholar
  101. Subramanian V, Liu T-N, Yeh WK, Serdar CM, Wackett LP & Gibson DT (1985) Purification and properties of FerredoxinTOL: A component of toluene dioxygenase from Pseudomonas putida F1. J. Biol. Chem. 260: 2355-2363Google Scholar
  102. Sze CC & Shingler V (1999) The alarmone (p)ppGpp mediates physiological-responsive control at the ?54-dependent Po promoter. Mol. Microbiol. 31: 1217-1228Google Scholar
  103. Takami W, Horinouchi M, Mojiri H, Yamane H & Omori T (1999) Evaluation of trichloroethylene degradation by E. coli transformed with dimethyl sulfide monooxygenase genes and/or cumene dioxygenase genes. Biotech. Lett. 21: 259-264Google Scholar
  104. Uchiyama H, Nakajima T, Yagi O & Nakahara T (1992) Role of heterotrophic bacteria in complete mineralization of trichloroethylene by Methylocystis sp. strain-M. Appl. Environ. Microbiol. 58: 3067-3071Google Scholar
  105. van Hylckama Vlieg JET, De Koning W & Janssen DB (1997) Effect of chlorinated ethene conversion on viability and activity of Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 63: 4961-4964Google Scholar
  106. van Hylckama Vlieg JET, De Koning W & Janssen DB (1996) Transformation kinetics of chlorinated ethenes by Methylosinus trichosporium OB3b and detection of unstable epoxides by on-line gas chromatography. Appl. Environ. Microbiol. 62: 3304-3312Google Scholar
  107. Vandenwijngaard AJ, Vanderkamp KWHJ, Vanderploeg J, Pries F, Kazemier B & Janssen DB (1992) Degradation of 1,2-dichloroethane by Ancylobacter aquaticus and other facultative methylotrophs. Appl. Environ. Microbiol. 58: 976-983Google Scholar
  108. Vannelli T, Studer A, Kertesz M & Leisinger T (1998) Chloromethane metabolism by Methylobacterium sp. Strain CM4. Appl. Environ. Microbiol. 64: 1933-1936Google Scholar
  109. Wackett LP (1996) Co-metabolism: Is the emperor wearing any clothes? Curr. Opinion Biotech. 7: 321-325Google Scholar
  110. Wackett LP & Householder SR (1989) Toxicity of trichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase. Appl. Environ. Microbiol. 55: 2723-2725Google Scholar
  111. Wackett LP, Kwart LD & Gibson DT (1988) Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida. Biochemistry 27: 1360-1367Google Scholar
  112. Wackett LP, Sadowsky MJ, Newman LM, Hur HG & Li SY (1994) Metabolism of polyhalogenated compounds by a genetically engineered bacterium. Nature 368: 627-629Google Scholar
  113. Whited GM & Gibson DT (1991) Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1. J. Bacteriol. 173: 3010-3016Google Scholar
  114. Wilkins PC, Dalton H, Podmore ID, Deighton N & Symons MCR (1992a) Biological methane activation involves the intermediacy of carbon-centered radicals. Eur. J. Biochem. 210: 67-72Google Scholar
  115. Wilkins PC, Dalton H, Samuel CJ & Green J (1994) Further evidence for multiple pathways in soluble methane-monooxygenasecatalysed oxidations from the measurement of deuterium kinetic isotope effects. Eur. J. Biochem. 226: 555-560Google Scholar
  116. Wilkins RG (1992b) Binuclear iron centres in proteins. Chem. Soc. Rev. 21: 171-178Google Scholar
  117. Winter RB, Yen K-M & Ensley BD (1989) Efficient degradation of trichloroethylene by a recombinant Escherichia coli. Bio/Technology 7: 282-285Google Scholar
  118. Yee DC, Maynard JA & Wood TK (1998) Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene orthomonooxygenase constitutively. Appl. Environ. Microbiol. 64: 112-118Google Scholar
  119. Yen KM, Karl MR, Blatt LM, Simon MJ, Winter RB, Fausset PR, Lu HS, Harcourt AA & Chen KK (1991) Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J. Bacteriol. 173: 5315-5327Google Scholar
  120. Yuste L, Canosa I & Rojo F (1998) Carbon-source-dependent expression of the PalkB promoter from the Pseudomonas oleovarans alkane degradation pathway. J. Bacteriol. 180: 5218-5226Google Scholar
  121. Zahn JA, Arciero DM, Hooper AM & DiSpirito AA (1996) Evidence for an iron center in the ammonia monooxygenase from Nitrosomonas europaea. FEBS Letters 397: 35-38Google Scholar
  122. Zahn JA & DiSpirito A (1996) Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath) J. Bacteriol 178: 1018-1029Google Scholar
  123. Zhou NY, Jenkins A, Chan Kwo Chion CK & Leak DJ (1999) The alkene monooxygenase from Xanthobacter strain Py2 is closely related to aromatic monooxygenases and catalyzes aromatic monohydroxylation of benzene, toluene, and phenol. Appl. Environ. Microbiol. 65: 1589-1595Google Scholar
  124. Zylstra GJ & Gibson DT (1989) Toluene degradation by Pseudomonas putida F1: nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J. Biol. Chem. 264: 14940-14946Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Daniel J. Arp
    • 1
  • Chris M. Yeager
    • 1
  • Michael R. Hyman
    • 2
  1. 1.Department of Botany and Plant PathologyOregon State UniversityCorvallisUSA
  2. 2.Department of MicrobiologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations