Advertisement

Antonie van Leeuwenhoek

, Volume 80, Issue 1, pp 1–10 | Cite as

Development of a PCR test for the detection of Curtobacterium flaccumfaciens pv. flaccumfaciens

  • Patricia Messenberg Guimaraés
  • Sabrina Palmano
  • Julian J. Smith
  • Maria F. Grossi de Sá
  • Gerry S. SaddlerEmail author
Article

Abstract

A chromosomal DNA library of the bacterial pathogen of bean, Curtobacterium flaccumfaciens pv. flaccumfaciens NCPPB 559 was constructed in the plasmid pGEM-7Zf(+). Several clones were identified that hybridised to all Curtobacterium flaccumfaciens pathovars including: C. f. betae, C. f. flaccumfaciens, C. f. oortii, C. f. poinsettiae and, in addition, to some strains of Clavibacter michiganensis subsp. insidiosus and Clavibacter michiganensis subsp. One of these clones (pPMP-26), after subsequent digestion with restriction endonucleases EcoRI/SacI, yielded a fragment of approximately 0.2 Kb (pPMP-26D) that hybridised specifically to C. f. flaccumfaciens and not to any of the other plant pathogenic members of the order Actinomycetales or any of the other prokaryotic bean pathogens tested. This fragment was subcloned and sequenced, analysis of the resultant 198 bp sequence showed that no significant homology existed with any other sequence currently deposited in public databases. Further analysis of these data facilitated the design of PCR primers which were subsequently tested against a wide range of plant pathogenic actinomycetes and other prokaryotic bean pathogens. Results show that these primers are highly specific for all strains of C. f. flaccumfaciens with no cross-reaction to strains from any other bacterial taxa tested.

Curtobacterium flaccumfaciens pv. flaccumfaciens PCR detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenburger P, Kämpfer P, Akimov VN, Lubitz W & Busse HJ (1997) Polyamine distribution in actinomycetes with group B peptidoglycan and species of the genera Brevibacterium, Corynebacterium and Tsukamurella. Int. J. Syst. Bacteriol. 47: 270-277Google Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) Basic local alignment search tool. J. Molec. Biol. 215: 403-410.Google Scholar
  3. Ball SFL & Reeves JC (1992). Application of rapid techniques to seed health testing-prospects and potential. In: Duncan JM & Torrance L (Eds) Techniques for the rapid detection of plant pathogens (pp 193-207). Blackwells Scientific Publications, OxfordGoogle Scholar
  4. Bradbury JF (1986) Guide to Plant Pathogenic Bacteria. CAB International Mycological Institute, KewGoogle Scholar
  5. Calzolari A, Tomenasi M & Mazzucchi V (1987) Comparison of immunofluorescence staining and indirect isolation for the detection of Corynebacterium flaccumfaciens in bean seeds.Bulletin OEPP/EPPO 17: 157-163.Google Scholar
  6. Carlson RR & Vidaver AK (1982) Taxonomy of Corynebacterium plant pathogens, including a new pathogen of wheat, based on polyacrylamide gel electrophoresis of cellular proteins. Int. J. Syst. Bacteriol. 32: 315-326.Google Scholar
  7. Collins MD, Goodfellow M & Minnikin DE (1980) Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. J. Gen. Microbiol. 118: 29-37.Google Scholar
  8. Collins MD & Jones D (1980) Lipids in the classification of coryneform bacteria containing peptidoglycan based on 2,4-diaminobutyric acid. J. Appl. Bacteriol. 48: 459-470Google Scholar
  9. Collins MD & Jones D (1983) Reclassification of Corynebacterium flaccumfaciens, Corynebacterium betae, Corynebacterium oortii and Corynebacterium poinsettiae in the genus Curtobacterium as Curtobacterium flaccumfaciens comb. nov. Journal of General Microbiology 129: 3545-3548Google Scholar
  10. Coyne DP & Schuster ML (1979) Bacterial diseases of legumes: Breeding and resistance. In: Summerfield A & Bunting H (Eds) Advances in Legume Science (pp 225-233). Royal Botanical Gardens, Kew, Surrey, UKGoogle Scholar
  11. Diatlof A, Wong TM & Mazzucchi V (1993) Non destructive methods of detecting Curtobacterium flaccumfaciens pv. flaccumfaciens in mungbean seeds. Lett. Appl. Microbiol. 16: 269-273Google Scholar
  12. Dowson WJ (1957) Plant Diseases Due to Bacteria. Cambridge University Press, CambridgeGoogle Scholar
  13. Felske A, Vancanneyt M, Kersters K & Akkermans ADL (1999) Application of temperature-gradient gel electrophoresis in taxonomy of coryneform bacteria. Int. J. Syst. Bacteriol. 49: 113-121Google Scholar
  14. Henningson PJ & Gudmestad NC (1991) Fatty acid analysis of phytopathogenic coryneform bacteria. J. Gen. Microbiol. 137: 427-440Google Scholar
  15. Hu X, Lai FM, Reddy ASN & Ishimaru CA (1995) Quantitative detection of Clavibacter michiganensis subsp. sepedonicus by competitive polymerase chain reaction. Phytopathology 85: 1468-1473Google Scholar
  16. Jones D (1975) A numerical taxonomy study of coryneform and related bacteria. J. Gen. Microbiol. 187: 52-96Google Scholar
  17. Lazar I (1968) Serological relationships of Corynebacterium. J. Gen. Microbiol. 52: 77-78Google Scholar
  18. Lee IM, Bartoszyk, IM, Gunderson DE, Mogen B & David RE (1997). Nested PCR for ultrasensitive detection of the potato ring rot bacterium, Clavibacter michiganensis subsp sepedonicus. Appl. Environ. Microbiol. 63: 2625-2630Google Scholar
  19. Li X & De Boer SH (1995) Selection of polymerase chain reaction primers from an RNA intergenic spacer region for specific detection of Clavibacter michiganensis subsp. sepedonicus. Phytopathology 85: 837-842Google Scholar
  20. Li X, De Boer SH & Ward LJ (1997) Improved microscopic identi-fication of Clavibacter michiganensis subsp. sepedonicus cells by combining in situ hybridization with immunofluorescence. Lett. Appl. Microbiol. 24: 431-434Google Scholar
  21. Locci R, Firrao G, Pertolini B & Sardi P (1989) Numerical taxonomy of phytopathogenic corynebacteria. Ann. Microbiol. Enzimol. 39: 59-92Google Scholar
  22. Maniatis T, Fritsch EF & Sambrook J (1982) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  23. Maude RB (1996) Seedborne Diseases and their Control: Principles & Practice. CAB International, WallingfordGoogle Scholar
  24. McDonald JG & Wong E (2000) High diversity in Curtobacterium flaccumfaciens pv. flaccumfaciens characterized by serology and rep-PCR genomic fingerprinting. Can. J. Plant Pathol. 22: 17-22Google Scholar
  25. Mills D, Russell BW & Hanus JW (1997) Specific detection of Clavibacter michiganensis subsp. sepedonicus by amplification of three unique DNA sequences isolated by subtraction hybridisation. Phytopathology 87: 853-861Google Scholar
  26. Mizuno A, Nozu Y, Kadota I & Nisiyama K (1995) The monoclonal antibodies against protein complex derived from Curtobacterium flaccumfaciens pv. flaccumfaciens. Ann. Phytopath. Soc. Japan 61: 69-74Google Scholar
  27. Pan YB, Grisham MP, Burner DM, Damann Kejr & Wei Q (1998) A polymerase chain reaction protocol for the detection of Clavibacter xyli subsp. xyli, the causal bacterium of sugarcane ratoon stunting disease 82: 285-290Google Scholar
  28. Rasmussen OF & Reeves JC (1992) DNA probes for the detection of plant pathogenic bacteria. J. Biotechnol. 25: 203-220Google Scholar
  29. Rasmussen OF & Wulff BS (1990) Identification and use of DNA probes for plant pathogenic bacteria. In: Christiansen C, Munck L & Villadsen J (Eds.) Proccedings of the fifth European Congress on Biotechnology (pp 693-698). Munksgaards, CopenhagenGoogle Scholar
  30. Sanger F, Nicklen S & Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc. Nat. Acad. Sci. 74, 54-63Google Scholar
  31. Schaad NW (1979) Serological identification of plant pathogenic bacteria. Ann. Rev. Phytopath. 17: 123-147Google Scholar
  32. Schaad NW, Bonde MR & Hatziloukas E (1997) BIO-PCR: A highly sensitive technique for detecting seedborne fungi and bacteria. In: Hutchins JD & Reeves JC (Eds) Seed Health Testing: Progress Towards the 21st Century (pp 159-164). CAB International, Wallingford, UKGoogle Scholar
  33. Schneider BJ, Zhao JL & Orser CS (1993). Detection of Clavibacter michiganensis subsp. sepedonicus by DNA amplification. FEMS Microbiol. Lett. 109: 207-212Google Scholar
  34. Slack SA, Drennan JL, Westra AAG, Gudmestad NC & Oleson AE (1996) Comparison of PCR, ELISA and DNA hybridisation for the detection of Clavibacter michiganensis subsp. sepedonicus in field-grown potatoes. Plant Disease 80: 519-524Google Scholar
  35. Smith IM, McNamara DG, Scott PR & Holderness M (Eds) (1997) Quarantine Pests for Europe. Second Edition. Curtobacterium flaccumfaciens pv. flaccumfaciens (pp 991-994). CAB International, WallingfordGoogle Scholar
  36. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Molec. Biol. 98: 503-517Google Scholar
  37. Starr MP, Mandel M & Murata N (1975) The phytopathogenic bacteria in the light of DNA base composition and DNA-DNA segmental homology. J. Gen. Microbiol. 21: 13-26Google Scholar
  38. Thomas WD & Graham RW (1952) Bacteria in apparently healthy pinto beans. Phytopathology 42: 214Google Scholar
  39. Thompson E, Leary JV & Chun WWC (1989) Specific detection of Clavibacter michiganensis subsp. michiganensis by a homologous DNA probe. Phytopathology 79: 311-314Google Scholar
  40. Van Vuurde JWL (1997) Immunofluorescence colony-staining as a tool for sample indexing and for the determination of field thresholds for pathogenic seedborne bacteria. In: Hutchins JD & Reeves JC (Eds) Seed Health Testing: Progress Towards the 21st Century (pp 165-173). CAB International, WallingfordGoogle Scholar
  41. Van Vuurde JWL, Van den Boven Kamp GW & Birnbaum Y (1983) Immunofluorescence microscopy and enzyme linked immunosorbent assay as potential routine tests for the detection of Pseudomonas syringae pv. phaseolicola and Xanthomonas campestris pv. phaseoli in bean seed. Seed Sci. Technol. 11: 547-559Google Scholar
  42. Venette JR, Lamppa RS & Gross PL (1995) First report of bean bacterial wilt caused by Curtobacterium flaccumfaciens subsp. flaccumfaciens in North Dakota. Plant Disease 79: 966Google Scholar
  43. Vidaver AK & Starr MP (1981) Phytopathogenic coryneforms and related bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A & Schlegel HG (Eds) The Prokaryotes, Volume II (pp 1879-1887). Springer-Verlag, HeidelbergGoogle Scholar
  44. Yamada K & Komagata K (1972) Taxonomic studies on Corynebacterium bacteria: Part IV. Morphological, cultural, biochemical and physiological characteristics. Part V. Classification of coryneform bacteria. J. Gen. Microbiol. 18: 399-431Google Scholar
  45. Zhao YF, Wei Y, Gao CS, Zhao LZ, Huang GM & Huang QL (1997) Using the Biolog identification system for rapid identi-fication of bean wilt bacterium (Curtobacterium flaccumfaciens pv. flaccumfaciens). Acta Phytopathol. Sinica 27: 139-144Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Patricia Messenberg Guimaraés
    • 1
  • Sabrina Palmano
    • 2
  • Julian J. Smith
    • 3
  • Maria F. Grossi de Sá
    • 1
  • Gerry S. Saddler
    • 4
    • 5
    Email author
  1. 1.National Research Center for Genetic Resources and Biotechnology (CENARGEN/EMBRAPA)Brasília-DFBrazil
  2. 2.Dipartimento di Biologia Applicata alla Difesa delle PianteUniversità di UdineUdineItaly
  3. 3.CABI BioscienceUK CentreSurreyUK
  4. 4.CABI BioscienceUK CentreSurreyUK
  5. 5.Scottish Agricultural Science AgencyEast Craigs, EdinburghScotland Author for correspondence; E-mail

Personalised recommendations