Water, Air, and Soil Pollution

, Volume 132, Issue 1–2, pp 89–104

Fulvic Acid-Sulfide Ion Competition for Mercury Ion Binding in the Florida Everglades

Article

Abstract

Negatively charged functional groups of fulvic acid compete with inorganic sulfide ion for mercury ion binding. This competition is evaluated here by using a discrete site-electrostatic model to calculate mercury solution speciation in the presence of fulvic acid. Model calculatedspecies distributions are used to estimate a mercury-fulvicacid apparent binding constant to quantify fulvic acid and sulfide ion competition for dissolved inorganic mercury (Hg(II)) ion binding. Speciation calculations done with PHREEQC,modified to use the estimated mercury-fulvic acid apparent binding constant, suggest that mercury-fulvic acid and mercury-sulfide complex concentrations are equivalent for very low sulfide ion concentrations (about 10-11 M) in Everglades' surface water. Where measurable total sulfide concentration (about 10-7 M or greater) is present inEverglades' surface water, mercury-sulfide complexes shoulddominate dissolved inorganic mercury solution speciation. Inthe absence of sulfide ion (for example, in oxygenated Everglades' surface water), fulvic acid binding should dominateEverglades' dissolved inorganic mercury speciation.

Florida Everglades fulvic acid ion binding mercury mercury speciation PHREEQC sulfide ion WHAM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiken, G. R.: 1995, Environmental Science and Technology 26, 2435.Google Scholar
  2. Allard, B. and Arsenie, I.: 1991, Water, Air, and Soil Pollut. 56, 457.Google Scholar
  3. Armstrong, D. E., Hurley, J. P., Swackhamer, D. L. and Shafer, M. M.: 1987, ‘Cycles of Nutrient Elements, Hydrophobic Organic Compounds, and Metals in Crystal Lake’, in R. A. Hites and S. J. Eisenreich (eds.), Sources and Fates of Aquatic Pollutants, American Chemical Society, Washington, pp. 491–518.Google Scholar
  4. Bloom, N. S., Watra, C. J. and Hurley, J. P.: 1991, Water, Air, and Soil Pollut. 56, 477.Google Scholar
  5. Charlton, S. R., Macklin, C. L. and Parkhurst, D. L.: 1997, ‘PHREEQCI-A Graphical User Interface for the Geochemical Computer Program PHREEQC’, Water-Resources Investigations Report, pp. 1–9.Google Scholar
  6. Cleckner, L. B., Garrison, P. J., Hurley, J. P., Olson, M. L. and Krabbenhoft, D. P.: 1998, Biogeochemistry 40, 347.Google Scholar
  7. Cotlove, E., Trantham, H. V. and Bowman, R. L.: 1958, Journal of Laboratory and Clinical Medicine 51, 461.Google Scholar
  8. Driscoll, C. T., Blette, V., Yan, C., Schofield, C. L., Munson, R. and Holsapple, J.: 1995, Water, Air, and Soil Pollut. 80, 499.Google Scholar
  9. Driscoll, C. T., Holsapple, J., Schofield, C. L. and Munson, R.: 1998, Biogeochemistry 40, 137.Google Scholar
  10. Driscoll, C. T., Yan, C., Schofield, C. L., Munson, R. and Holsapple, J.: 1994, Environmental Science and Technology 28, 136A.Google Scholar
  11. Fishman, M. J. and Freidman, L. C.: 1985, ‘Methods for determination of inorganic substances in water and fluvial sediments’, U.S. Geological Survey Open-File Report, p. 709.Google Scholar
  12. Garbarino, J. R. and Taylor, H. E.: 1980, Applied Spectroscopy 34, 584.Google Scholar
  13. Gilmour, C. C., Riedel, G. S., Ederington, M. C., Bell, J. T., Benoit, J. M., Gill, G. A. and Stordal, M. C.: 1998, Biogeochemistry 40, 327.Google Scholar
  14. Goyer, R. A., Vasken Aposhian, H., Arab, L., Bellinger, D. C., Burbacher, T.M., Burke, T. M., Burke, T. A., J acobson, J. L., Knobloch, L. M., Ryan, L. M. and Stern, A.: 2000, Toxicological Effects of Methylmercury, National Academy Press, Washington, DC, 290 pp.Google Scholar
  15. Hintelmann, H., Welbourn, P. M. and Evans, R. D.: 1995, Water, Air, and Soil Pollut. 80, 1031.Google Scholar
  16. Hintelmann, H., Welbourn, P. M. and Evans, R. D.: 1997, Environmental Science and Technology 31, 489.Google Scholar
  17. Hoch, A. R., Reddy, M. M. and Aiken, G. R.: 2000, Geochimica et Cosmochimica Acta 64, 61.Google Scholar
  18. Hoffman, M. R.: 1977, Environmental Science and Technology 11, 61.Google Scholar
  19. Hurley, J. P., Benoit, J. M., Babiarz, C. L., Schafer, M. M., Andren, A.W., Sullivan, J. R., Hammond, R. and Webb, D. A.: 1995, Environmental Science and Technology 29, 1867.Google Scholar
  20. Hurley, J. P., Krabbenhoft, D. P., Babiarz, C. L. and Andren, A. W.: 1994, ‘Cycling of Mercury Across the Sediment-Water Interface in Seepage Lakes’, in L. A. Baker, (ed.), Environmental Chemistry of Lakes and Reservoirs, ACS Advances in Chemistry Series No. 237, American Chemical Society, Washington, pp. 425–449.Google Scholar
  21. Hurley, J. P., Krabbenhoft, D. P., Cleckner, L. B., Olson, M. L., Aiken, G. R. and Rawlik Jr., P. S.: 1998, Biogeochemistry 40, 293.Google Scholar
  22. Kerndorff, H. and Schnitzer, M.: 1980, Geochimica et Cosmochimica Acta 44, 1701.Google Scholar
  23. Koch, M. S. and Reddy, K. R.: 1992, Soil Science Society of America Journal 56, 1492.Google Scholar
  24. Krabbenhoft, D. P., Benoit, J. M., Babiarz, C. L., Hurley, J. P. and Andren, A. W.: 1995, Water, Air, and Soil Pollut. 80, 425.Google Scholar
  25. Krabbenhoft, D. P., Hurley, J. P., Olson, M. L. and Cleckner, L. B.: 1998, Biogeochemistry 40, 311.Google Scholar
  26. Lawson, N. M. and Mason, R. P.: 1998, Biogeochemistry 40, 235.Google Scholar
  27. Lovgren, L. and Sjoberg, S.: 1989, Water Research 23, 327.Google Scholar
  28. Mantoura, R. F. C., Dickson, A. and Riley, J. P.: 1978, Estuarine and Coastal Marine Science 6, 387.Google Scholar
  29. Marinsky, J. A., Mathuthu, A., Ephraim, J. H. and Reddy, M. M.: 1999, Radiochimica Acta 84, 205.Google Scholar
  30. Millero, F. J., LeFerriere, A., Fernandez, M., Hubinger, S. and Hershey, J. P.: 1989, Environmental Science and Technology 23, 209.Google Scholar
  31. Parkhurst, D. L.: 1995, ‘Users guide to PHREEQC — A Computer Program for Speciation, Reaction-Path, Advective-Transport, and Inverse Geochemical Calculations’, U.S. Geological Survey Open-File Report, pp. 1–43.Google Scholar
  32. Perdue, E. M. and Lytle, C. R.: 1983, Environmental Science and Technology 17, 654.Google Scholar
  33. Ravichandran, M., Aiken, G. R., Reddy, M. M. and Ryan, J. N.: 1998, Environmental Science and Technology 32, 3305.Google Scholar
  34. Ravichandran, M., Aiken, G. R., Ryan, J. N. and Reddy, M. M.: 1999, Environmental Science and Technology 33, 1418.Google Scholar
  35. Reddy, M. M., Schuster, P. F. and Harte, J. J.: 1989, ‘Summary of Data from Onsite and Laboratory Analyses of Precipitation Runoff from Carbonate-Stone Surfaces, National Acid Precipitation Assessment Program, June 1984 to November 1987’, U.S. Geological Survey Open-File Report, pp. 1–19.Google Scholar
  36. Scherbatskoy, T., Shanley, J. B. and Keeler, G. J.: 1998, Water, Air, and Soil Pollut. 105, 427.Google Scholar
  37. Shafer, M. M., Overdier, J. T., Hurley, J. P., Armstrong, D. and Webb, D.: 1997, Chemical Geology 136, 71.Google Scholar
  38. Shanley, J. B., Donlon, A. F., Scherbatskoy, T. and Keeler, G. J.: 1999, Water Science and Application 1, 277.Google Scholar
  39. Tipping, E.: 1994, Computers and Geosciences 20, 973.Google Scholar
  40. Wood, W. W.: 1976, ‘Guidelines for Collection and Field Analysis of Ground-Water Samples for Selected Unstable Constituents’, in W. W. Wood, (ed.), Techniques of Water-Resources Investigations of the United States Geological Survey, Chapter D2, Book 1, Techniques of Water-Resources Investigations of the U.S. Geological Survey, 76–241, pp. 1–24.Google Scholar
  41. Yin, Y., Allen, H. E., Huang, CP. and Sanders, P. F.: 1997, Analytica Chimica Acta 341, 73.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  1. 1.U.S. Geological SurveyBoulderU.S.A.

Personalised recommendations