Advertisement

General Relativity and Gravitation

, Volume 33, Issue 8, pp 1381–1405 | Cite as

On Average Properties of Inhomogeneous Fluids in General Relativity: Perfect Fluid Cosmologies

  • Thomas Buchert
Article

Abstract

For general relativistic spacetimes filled with an irrotational perfect fluid a generalized form of Friedmann's equations governing the expansion factor of spatially averaged portions of inhomogeneous cosmologies is derived. The averaging problem for scalar quantities is condensed into the problem of finding an "effective equation of state" including kinematical as well as dynamical "backreaction" terms that measure the departure from a standard FLRW cosmology. Applications of the averaged models are outlined including radiation-dominated and scalar field cosmologies (inflationary and dilaton/string cosmologies). In particular, the averaged equations show that the averaged scalar curvature must generically change in the course of structure formation, that an averaged inhomogeneous radiation cosmos does not follow the evolution of the standard homogeneous-isotropic model, and that an averaged inhomogeneous perfect fluid features kinematical "backreaction" terms that, in some cases, act like a free scalar field source. The free scalar field (dilaton) itself, modelled by a "stiff" fluid, is singled out as a special inhomogeneous case where the averaged equations assume a simple form.

Cosmology perfect fluid backreaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Adler, S., and Buchert, T. (1999). Astron. Astrophy. 343, 317.Google Scholar
  2. 2.
    Arnowitt, R., Deser, S., and Misner, C. W. (1962). In Gravitation: an Introduction to Current Research L. Witten (ed.), New York: Wiley.Google Scholar
  3. 3.
    Bruni, M., Dunsby, P. K. S., and Ellis, G. F. R. (1992a). Astrophys. J. 395, 34.Google Scholar
  4. 4.
    Bruni, M., Ellis, G. F. R., and Dunsby, P. K. S. (1992b). Class. Quant. Grav. 9, 921.Google Scholar
  5. 5.
    Buchert, T. (2000). Gen. Rel. Grav. 32, 105. (Paper I).Google Scholar
  6. 6.
    Buchert, T., and Domínguez, A. (1998). Astron. Astrophys. 335, 395.Google Scholar
  7. 7.
    Buchert, T., Domínguez, A., and Pérez-Mercader, J. (1999). Astron. Astrophys. 349, 343.Google Scholar
  8. 8.
    Buchert, T., and Ehlers, J. (1997). Astron. Astrophys. 320, 1.Google Scholar
  9. 9.
    Buchert, T., and Veneziano, G. (2001). In preparation.Google Scholar
  10. 10.
    Dunsby, P. K. S., Bruni, M., and Ellis, G. F. R. (1992). Astrophys. J. 395, 54.Google Scholar
  11. 11.
    Ehlers, J. (1961). Akad. Wiss. Lit. (Mainz); Abh. Math.-Nat. Kl. No. 11, 793; translation: Gen. Rel. Grav. 25, 1225 (1993).Google Scholar
  12. 12.
    Ehlers, J. (1971). In “General Relativity and Cosmology,” Proc. XLVII Enrico Fermi School, R. K. Sachs (ed.), New York: Academic, pp. 1–67.Google Scholar
  13. 13.
    Ellis, G. F. R. (1971). In “General Relativity and Cosmology,” Proc. XLVII Enrico Fermi School, R. K. Sachs (ed.), New York: Academic, pp. 104–179.Google Scholar
  14. 14.
    Ellis, G. F. R., and Bruni, M. (1989). Phys. Rev. D 40, 1804.Google Scholar
  15. 15.
    Ellis, G. F. R., Bruni, M., and Hwang, J. (1990). Phys. Rev. D 42, 1035.Google Scholar
  16. 16.
    Hwang, J., and Vishniac, E. (1990). Astrophys. J. 353, 1.Google Scholar
  17. 17.
    Israel, W. (1976). Ann. Phys. (NY) 100, 310.Google Scholar
  18. 18.
    Kasai, M. (1995). Phys. Rev. D 52, 5605.Google Scholar
  19. 19.
    King, A. R., and Ellis, G. F. R. (1973). Commun. Math. Phys. 31, 209.Google Scholar
  20. 20.
    MacCallum, M. A. H., and Taub, A. H. (1972). Commun. Math. Phys. 25, 173.Google Scholar
  21. 21.
    Madsen, M. S. (1988). Class. Quant. Grav. 5, 627.Google Scholar
  22. 22.
    Maartens, R., Triginer, J., and Matravers, D. R. (1999). Phys. Rev. D 60, 103503.Google Scholar
  23. 23.
    Stoeger, W. R., Helmi, A., and Torres, D. F. (1999). gr-qc/9904020.Google Scholar
  24. 24.
    Takada, M., and Futamase, T. (1999). Gen. Rel. Grav. 31, 461.Google Scholar
  25. 25.
    Taub, A. H. (1973). Commun. Math. Phys. 29, 79.Google Scholar
  26. 26.
    Yodzis, P. (1974). Proc. Royal Irish Acad. 74A, 61.Google Scholar
  27. 27.
    York, J. W. Jr. (1979). In “Sources of Gravitational Radiation,” L. Smarr (ed.), Cambridge Univ. Press, p. 83.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Thomas Buchert
    • 1
  1. 1.Département de Physique ThéoriqueUniversité de GenèveGenève 4Switzerland

Personalised recommendations