Pharmaceutical Research

, Volume 14, Issue 3, pp 259–266 | Cite as

The Oral Absorption of Micro- and Nanoparticulates: Neither Exceptional Nor Unusual

  • Alexander T. Florence


This mini-review covers some of the historical and recent arguments over the experimental evidence on the uptake by and translocation from the intestinal mucosa of microparticulates after oral administration. It is concluded that there is now no dispute over the fact that this is a normal occurrence. Particulate uptake does take place, not only via the M-cells in the Peyer's patches and the isolated follicles of the gut-associated lymphoid tissue, but also via the normal intestinal enterocytes. Factors affecting uptake include particle size, surface charge and hydrophobicity and the presence or absence of surface ligands. The covalent attachment of lectin or invasin molecules to the surface of carrier particles leads to greater systemic uptake. Whether or not the route can be utilized for the routine administration of therapeutic agents which are not normally absorbed from the gut is not yet proven. Many studies show that 2−3% of the ingested dose of submicron particles can be absorbed. The increasing diversity of carrier systems, which includes dendrimers and liposomes, needs to be exploited fully. More also must be learned about the inter- and intra-subject variability of lymphoid tissue so that appropriate selectivity can be achieved through the design of specific carriers.

microparticles Peyer's patches GALT particle absorption oral delivery lymphatics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Verzar. Absorption from the Intestine. Longmans, Green and Co., London, 1936.Google Scholar
  2. 2.
    G. Volkheimer and F. H. Schulz, Digestion 1:213–218 (1968); see also G. Volkheimer. Adv. Pharmacol. Chemother., 14:163–187 (1977).Google Scholar
  3. 3.
    P. U. Jani. G. W. Halbert, J. Langridge, and A. T. Florence. J. Pharmacol. 41:809–812 (1989).Google Scholar
  4. 4.
    J. E. O'Mullane, P. Artursson, and E. Tomlinson. Ann N.Y. Acad. Sci. 507:117–128 (1987).Google Scholar
  5. 5.
    S. S. Davis. Bulletin Technique Gattefossé, No 86:9–14 (1993).Google Scholar
  6. 6.
    S. S. Davis. (Book review), TIPS 15:64 (1994).Google Scholar
  7. 7.
    I. R. Sanderson and W. A. Walker. Gastroenterology 104:622–639 (1993).Google Scholar
  8. 8.
    W. A. Walker. Ann. Allergy 59:7–16 (1974).Google Scholar
  9. 9.
    J. Pappo and R. T. Mahlman. Immunology 78:505–507 (1993).Google Scholar
  10. 10.
    P. Sundaram, W. Xiao, and J. L. Brandsma. Nucleic Acids Res. 24:1375–1377 (1996).Google Scholar
  11. 11.
    G. Cevc, A. Shätzlein, and G. Blume. J. Control. Rel. 36:3–16 (1995).Google Scholar
  12. 12.
    R. D. Pontefract and H. M. Cunningham. Nature 243:352–353 (1973).Google Scholar
  13. 13.
    J. G. Collee. Lancet 347:917–918 (1996).Google Scholar
  14. 14.
    J. R. Casley-Smith, Ann. N.Y. Acad. Sci. 116:803–830 (1964); J. R. Casley-Smith., Quart. J. Exp. Physiol. 49:365–383 (1964).Google Scholar
  15. 15.
    S. N. Sullivan, Lancet 336:1096–1097 (1990).Google Scholar
  16. 16.
    N. A. Shepherd, P. R. Crocker, A. P. Smith, and D. A. Levison. Hum. Pathol. 18:50–54 (1987).Google Scholar
  17. 17.
    J. J. Powell, C. C. Ainley, R. S. J. Harvey, I. M. Mason et al., Gut 38:390–395.Google Scholar
  18. 18.
    P. U. Jani, D. E. McCarthy, and A. T. Florence. Int. J. Pharm. 105:157–168 (1994).Google Scholar
  19. 19.
    A. C. Wotherspoon, C. Ortiz-Hidalgo, M. R. Falzon, and P. G. Isaacson. Lancet 338:1175–1176 (1991).Google Scholar
  20. 20.
    T. T. MacDonald and J. O. Spencer in (ed) R. V. Heatley, Gastrointestinal and Hepatic Immunology. Cambridge University Press: Cambridge, 1994.Google Scholar
  21. 21.
    M. A. Jepson, M. A. Clark, N. L. Simmons, and B. H. Hirst. Histochemistry, 100:441–447 (1993).Google Scholar
  22. 22.
    R. D. Berg and A. W. Garlington. Infect. Immunol. 23:403–411 (1979).Google Scholar
  23. 23.
    P. C. Sedman, J. Macfie, P. Sagar, C. J. Mitchell, J. May, B. Mancey-Jones, and D. Johnstone. Gastroenterology 107:643–649 (1994).Google Scholar
  24. 24.
    E. A. Deitch. Arch. Surg. 124:699–701 (1989).Google Scholar
  25. 25.
    N. S. Ambrose, M. Johnson, D. W. Burdon, and M. R. B. Keighley. Br. J. Surg. 71:623–625.Google Scholar
  26. 26.
    C. L. Wells, R. P. Jechorek, S. B. Olmsted, and S. L. Erlandsen.Google Scholar
  27. 27.
    E. A. Deitch, L. Ma, W. J. Ma, M. B. Grisham, D. N. Granger, R. D. Specian, and R. D. Berg. J. Clin. Invest. 84:36–42 (1989).Google Scholar
  28. 28.
    D. J. Keljo, D. G. Butler, and J. R. Hamilton. Gastroenterology 88:998–1004 (1985).Google Scholar
  29. 29.
    J. Kreuter. Adv. Drug Del. Rev. 7:71–86 (1991).Google Scholar
  30. 30.
    A. T. Florence and P. U. Jani. in A. Rolland (ed.) Pharmaceutical Particulate Carriers. Marcel Dekker, New York, 1993.Google Scholar
  31. 31.
    D. T. O'Hagan. Adv. Drug Del. Rev. 5:265–285 (1990).Google Scholar
  32. 32.
    E. C. Lavelle, S. Sharif, N. W. Thomas, J. Holland, and S. S. Davis. Adv. Drug Dev. Rev. 18:5–22 (1995).Google Scholar
  33. 33.
    A. T. Florence, A. M. Hillery, N. Hussain, and P. U. Jani. in G. Gregoriadis et al., (ed.) Targeting of Drugs 4, Plenum, New York, pp. 173–181, 1994.Google Scholar
  34. 34.
    D. T. O'Hagan, N. M. Christy, and S. S. Davis. Particulate and lymphatic drug delivery in W. N. Charman and V. J. Stella (eds.) Lymphatic Transport of Drugs, CRC Press, 1992.Google Scholar
  35. 35.
    P. U. Jani, G. W. Halbert, J. Langridge, and A. T. Florence. J. Pharm. Pharmacol. 42:821–826 (1990).Google Scholar
  36. 36.
    P. U. Jani, A. T. Florence, and D. E. McCarthy. Int. J. Pharm. 84:245–252 (1992).Google Scholar
  37. 37.
    A. M. Hillery, P. U. Jani, and A. T. Florence. J. Drug Targeting 2:151–156 (1994).Google Scholar
  38. 38.
    N. Hussain, PhD Thesis, University of London, 1996; N. Hussain, P. U. Jani and A. T. Florence, Pharm. Res., in press.Google Scholar
  39. 39.
    A. T. Florence, A. M. Hillery, N. Hussain, and P. U. Jani. J. Drug Targeting 3:65–70 (1995).Google Scholar
  40. 40.
    A. M. Hillery and A. T. Florence. Int. J. Pharm. 132:123–130 (1996).Google Scholar
  41. 41.
    P. G. Jenkins, K. A. Howard, N. W. Blackhall, N. W. Thomas, S. S. Davis, and D. T. O'Hagan. J. Control. Rel. 29:339–350 (1994).Google Scholar
  42. 42.
    M. K. Pratten and J. B. Lloyd. Biochim. Biophys. Acta 881:307–313 (1986).Google Scholar
  43. 43.
    H. Ayhan, A. Tuncel, N. Bor, and E. Piskin. J. Biomater. Sci. Polymer Edn. 7:329–342 (1995).Google Scholar
  44. 44.
    S. Rudt and R. H. Müller. J. Control. Rel. 25:51–59 (1993).Google Scholar
  45. 45.
    M. P. Desai, V. Labhasetwar, G. L. Amidon, and R. J. Levy. Pharm. Res., 13:1838–1845.Google Scholar
  46. 46.
    M. E. LeFevre, J. W. Vanderhoff, J. A. Laisse, and D. D. Joel. Experientia 34:120–122 (1978).Google Scholar
  47. 47.
    J. P. Ebel, Pharm. Res. 7:848–851 (1990).Google Scholar
  48. 48.
    J. H. Eldridge, C. J. Hammond, J. A. Meulbroek, J. K. Staas, R. M. Gilley, and T. R. Tice. J. Control. Rel. 11:205–214 (1990).Google Scholar
  49. 49.
    P. Couvreur and F. Puisieux. Adv. Drug Del. Rev. 10:141–162 (1993).Google Scholar
  50. 50.
    A. M. Le Ray, M. Vert, J. C. Gautier, and J. P. Benoît. Int. J. Pharm. 106:201–211 (1994).Google Scholar
  51. 51.
    M. Nefzger, J. Kreuter, R. Voges, E. Liehl, and R. Czok. J. Pharm. Sci. 73:1309–1311 (1984).Google Scholar
  52. 52.
    M. Kukan, V. Koprda, Š. Bezek, J. Kalal, J. Labsky, and T. Trnovec. Pharmazie 46:37–39 (1991).Google Scholar
  53. 53.
    L. Simon, G. Shine, and A. D. Dayan. J. Drug Targeting, 3:217–219 (1995).Google Scholar
  54. 54.
    G. M. Hodges, E. A. Carr, R. A. Hazzard, and K. E. Carr. Digest. Dis. Sci. 40:967–975 (1995); G. M. Hodges, E. A. Carr, R. A. Hazzard et al., J. Drug Targeting 3:57–60 (1995).Google Scholar
  55. 55.
    T. H. Ermak, E. P. Dougherty, H. R. Bhagat, Z. Kabok, and J. Pappo. Cell Tissue Res. 279:433–436 (1995).Google Scholar
  56. 56.
    A. M. Hillery, I. Toth, and A. T. Florence. J. Control. Rel. 41:271–281 (1996).Google Scholar
  57. 57.
    A. M. Hillery, I. Toth, and A. T. Florence. J. Control. Rel. 42:65–73 (1996).Google Scholar
  58. 58.
    A. M. Hillery, I. Toth, and A. T. Florence, Pharm. Sci. 2:281–293 (1996).Google Scholar
  59. 59.
    D. S. Deshmuck, W. D. Bear, and H. Brockerhoff. Life Sci. 28:239–242 (1990).Google Scholar
  60. 60.
    Y. Aramaki, H. Tomizawa, T. Hara, K. Yachi, H. Kikuchi, and S. Tsuchiya. Pharm. Res. 10:1228–1231 (1993).Google Scholar
  61. 61.
    H. Chen, V. Torchillin, and R. Langer. J. Control. Rel. 42:263–272 (1996).Google Scholar
  62. 62.
    S. Gould-Fogerite and R. J. Mannino. J. Liposome Res. 6:357–379 (1996).Google Scholar
  63. 63.
    D. A. Tomalia, A. M. Naylor, and W. A. Goddard. Angew. Chemie. Int. Edn. 29:138–175 (1990).Google Scholar
  64. 64.
    T. Sakthivel, A. T. Florence, and I. Toth. Pharm. Res. (Suppl.) 13:S-281 (1996).Google Scholar
  65. 65.
    L. A. Sternson, Ann. N.Y. Acad. Sci. 507:19–21 (1987).Google Scholar
  66. 66.
    S. J. Brett, A. V. Masurov, I. G. Charles, and J. P. Tite. Eur. J. Immunol. 23:1608–1614 (1993). And refs 18, 19 therein.Google Scholar
  67. 67.
    J. Pappo, T. H. Ermar, and H. T. Steger, Immunol. 73:277 (1991).Google Scholar
  68. 68.
    H. Chen, V. Torchillin, and R. Langer. Pharm. Res. 13:1378–1383 (1996).Google Scholar
  69. 69.
    B. Naisbett and J. F. Woodley. Biochem. Soc. Trans. 18:879–880 (1989); idem., Int. J. Pharm. 107:223–230; Int. J. Pharm. 110:127–136; Int. J. Pharm. 114:227–236; Int. J. Pharm. 247–254.Google Scholar
  70. 70.
    C-M. Lehr, J. A. Bouwstra, W. Kok, A. B. J. Noach, A. G. de Boer, and H. E. Juninger. Pharm. Res. 9:547–553 (1992); C.-M. Lehr and V. H. L. Lee. Pharm. Res. 10:1796–1799 (1993); E. Halfner, J. H. Easson, G. Russell-Jones and C.-M. Lehr. J. Control. Rel. 41:S1 (1996).Google Scholar
  71. 71.
    E. Palomina. Adv. Drug Del. Rev. 13:311–323 (1994).Google Scholar
  72. 72.
    M. N. Jones. Adv. Drug Del. Rev. 13:215–250 (1994).Google Scholar
  73. 73.
    K. Matsuno, T. Schaffner, H. A. Gerber, C. Ruchti, M. W. Hess, and R. E. S. Cottier. J. Reticuloendothelial Soc. 33:263–273 (1983).Google Scholar
  74. 74.
    N. Hussain and A. T. Florence. Pharm. Res., in press.Google Scholar
  75. 75.
    N. Hussain and A. T. Florence, to be published; see H. Hussain PhD Thesis, School of Pharmacy. University of London 1995.Google Scholar
  76. 76.
    N. Hussain. P. U. Jani, and A. T. Florence. Proc. Int. Symp. Control. Rel. Bioact. Mater. 21:29–30 (1994).Google Scholar
  77. 77.
    J. M. Irache, C. Durrer, D. Duchêne, and G. Ponchel. Pharm. Res. 13:1716–1719 (1996).Google Scholar
  78. 78.
    M. A. Jepson, N. L. Simmons, D. T. O'Hagan, and B. H. Hirst. J. Drug Targeting 1:245–249 (1993).Google Scholar
  79. 79.
    M. A. Jepson, C. M. Mason, M. A. Clark, N. L. Simmons, and B. H. Hirst. J. Drug Targeting 3:75–77 (1995).Google Scholar
  80. 80.
    T. C. Savidge and A. Shmakova. J. Drug Targeting 3:71–74 (1995).Google Scholar
  81. 81.
    N. Hussain and A. T. Florence. J. Control. Rel. 41:S3–S4 (1996).Google Scholar
  82. 82.
    R. R. Isberg and S. Falkow, Nature 317:262–264 (1985).Google Scholar
  83. 83.
    G. V. B. Young, S. Falkow, and G. K. Schoolnik. J. Cell. Biol. 116:197–207 (1992).Google Scholar
  84. 84.
    G. Tran van Nhieu and R. R. Isberg J. Biol. Chem. 266:24367–24375 (1991).Google Scholar
  85. 85.
    P. U. Jani, T. Nomura, F. Yamashita, Y. Takakura, A. T. Florence, and M. Hashida. J. Drug Targeting 4:87–93 (1996).Google Scholar
  86. 86.
    J. W. Thom and P. G. Debenedetti, J. Aerosol Sci. 22:555–584 (1991).Google Scholar
  87. 87.
    E. Merisko-Liversidge, P. Sarpotdar, J. Bruno, S. Hajj et al., Pharm. Res. 13:272–278 (1996).Google Scholar
  88. 88.
    S. M. C. Newton, C. O. Jacob, and B. A. D. Stocker. Science 244:70–72 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Alexander T. Florence
    • 1
  1. 1.Centre for Drug Delivery Research, School of PharmacyUniversity of LondonLondonUnited Kingdom

Personalised recommendations