Plasma Chemistry and Plasma Processing

, Volume 21, Issue 4, pp 665–678 | Cite as

Decomposition of CO2 Using Pulsed Corona Discharges Combined with Catalyst

  • Yuezhong Wen
  • Xuanzhen Jiang


The combination of pulsed corona discharges and catalyst was examined for decomposition of pure carbon dioxide in a corona reactor packed with porous γ-Al2O3 pellets. The decomposition of CO2 was greatly enhanced by packing γ-Al2O3. In the presence of γ-Al2O3, the conversion of CO2, yield of CO reach 23 and 15%, respectively. The CO2 conversion increases with increasing applied voltage and decreasing gas flow rate. The maximum energy efficiency for decomposition of CO2 reaches 318.7 g/kW hr. It was found that high surface area of γ-Al2O3 and strong adsorption capacity of CO2 on γ-Al2O3 play an important role in CO2 decomposition under corona discharges. At the same time, the presence of γ-Al2O3 suppresses the reaction of CO and O.

Carbon dioxide carbon monoxide decomposition corona discharges non-thermal plasma catalyst 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. C. J. Bradford and M. A. Vannice, Catal. Rev.–Sci. Eng. 41, 1 (1999).Google Scholar
  2. 2.
    J. Wang, G. Xia, A. Huang, S. Suib, Y. Hayashi, and H. Matsumoto, J. Catal. 185, 152 (1999).Google Scholar
  3. 3.
    W. O. Davies. J. Chem. Phys. 41, 1846 (1964).Google Scholar
  4. 4.
    A. Huczko, AIChE J. 30, 811 (1984).Google Scholar
  5. 5.
    M. Morvová, J. Phys. D: Appl. Phys. 31, 1865 (1998).Google Scholar
  6. 6.
    I. Maezono and J.-S. Chang, IEEE Trans. Indust. Appl. 26, 651 (1990).Google Scholar
  7. 7.
    K. Jogan, A. Mizuno, T. Yamamoto, and J. S. Chang, IEEE Trans. Indust. Appl. 29, 879 (1993).Google Scholar
  8. 8.
    Z. Xie, K. Jogan, and J.-S. Chang, IEEE Industry Applications Society Annual Meeting, 1, 809 (1990).Google Scholar
  9. 9.
    R. G. Buser and J. J. Sullivan, J. Appl. Phys. 41, 472 (1970).Google Scholar
  10. 10.
    H. Turčičová, J. Phys. D: Appl. Phys. 27, 106 (1994).Google Scholar
  11. 11.
    S. L. Brock, M. Marquez, S. L. Suib, Y. Hayashi, and H. Matsumoto, J. Catal. 180, 225 (1998).Google Scholar
  12. 12.
    S. L. Brock, T. Shimojo, M. Marquez, C. Marun, S. L. Suib, H. Matsumoto, and Y. Hayashi, J. Catal. 184, 123 (1999).Google Scholar
  13. 13.
    L. Hsieh, W. Lee, C. Li, C. Chen, Y. Wang, and M. Chang, J. Chem. Technol. Biotechnol. 73, 432 (1998).Google Scholar
  14. 14.
    S. Y. Savinov, H. Lee, H. K. Song, and B.-K. Na, Ind. Eng. Chem. Res. 28, 2540 (1999).Google Scholar
  15. 15.
    E. H. W. M. Smulders, B. E. J. M. Vanheesch, and S. S. V. B. Vanpaasen, IEEE Trans. Plasma Sci. 26, 1476 (1998).Google Scholar
  16. 16.
    A. Schütze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, IEEE Trans. Plasma Sci. 26, 1685 (1998).Google Scholar
  17. 17.
    R. G. Tonkyn, S. E. Barlow, and T. M. Orlando, J. Appl. Phys. 80, 4877 (1996).Google Scholar
  18. 18.
    F. D. Snell, L. S. Ettre Encyclopedia of Industrial Chemical Analysis: Vol. 16, John Wiley and Sons, New York (1972), p. 546.Google Scholar
  19. 19.
    J. O. Nilsson and J. E. Eninger, IEEE Trans. Plasma Sci. 25, 73 (1997).Google Scholar
  20. 20.
    M. C. Manchado, J. M. Guil, A. P. Masiá, A. R. Paniego, and J. M. Trejo Menayo, Langmuir 10, 685 (1994).Google Scholar
  21. 21.
    O. Dewade and G. F. Froment, Appl. Catal. A Gen. 185, 203 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Yuezhong Wen
    • 1
  • Xuanzhen Jiang
    • 2
  1. 1.Institute of Environmental ScienceZhejiang University, HangzhouZhejiangP.R. China
  2. 2.Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P.RChina

Personalised recommendations