Skip to main content
Log in

Abstract Hilbert Schemes

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

In analogy with classical projective algebraic geometry, Hilbert functors can be defined for objects in any Abelian category. We study the moduli problem for such objects. Using Grothendieck's general framework. We show that with suitable hypotheses the Hilbert functor is representable by an algebraic space locally of finite type over the base field. For the category of the graded modules over a strongly Noetherian graded ring, the Hilbert functor of graded modules with a fixed Hilbert series is represented by a commutative projective scheme. For the projective scheme corresponding to a suitable noncommutative graded algebra, the Hilbert functor is represented by a countable union of commutative projective schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M. F. and MacDonald, I. G.: Commutative Algebra, Addison-Wesley, Reading, 1969.

    Google Scholar 

  2. Artin, M.: Versal Deformations and algebraic stacks, Invent. Math. 27 (1974), 165-189.

    Google Scholar 

  3. Artin, M., Small, L. W., and Zhang, J.: Generic flatness for strongly Noetherian algebras, J. Algebra 221 (1999), 579-610.

    Google Scholar 

  4. Artin, M., Tate, J., and van den Bergh, M.: Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift, Vol. I, 33-85, Progr. Math. 86, Birkhäuser, Boston, 1990.

    Google Scholar 

  5. Artin, M. and Zhang, J. J.: Noncommutative projective schemes, Adv. Math. 109(2) (1994), 228-287.

    Google Scholar 

  6. Auslander, M., Reiten, I., and Smalø, S. O.: Representation Theory of Artin Algebras, Studies in Advanced Mathematics 36, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  7. Bosch, S., Lütkebohmert, W., and Raynaud, M.: Neron Models, Ergebnisse 3 Folge, Bd. 21, Springer, Berlin, 1990.

    Google Scholar 

  8. Eisenbud, D.: Commutative Algebra, with a View Toward Algebraic Geometry, Springer, New York, 1995.

    Google Scholar 

  9. Gelfand, S. I. and Manin, Ju. I.: Methods of Homological Algebra, Springer, Berlin, 1966.

    Google Scholar 

  10. Grothendieck, A.: Sur quelques points d'algèbre homologique, Tohoku Math. J. 9 (1957), 119-221.

    Google Scholar 

  11. Grothendieck, A.: Techniques de construction et théorèmes d'existence en géométrie algébrique IV: Les schemas de Hilbert, Séminaire Bourbaki, 13e année 1960-61, exposé 221, 1-28, Secrétariat Mathematique, Paris, 1961.

    Google Scholar 

  12. Grothendieck, A.: Fondements de la géométrie algébrique, Extraits du Séminaire Bourbaki, 1957-1962, Secrétariat mathématique, Paris, 1962.

    Google Scholar 

  13. Grothendieck, A. and Dieudonné, J.: Éléments de Géométrie Algébrique, Pub. Math. Inst. des Hautes Études Sci., Nos. 11, 28, Bures-sur-Yvette 1961, 1966.

  14. Hartshorne, R.: Residues and Duality, Lecture Notes in Mathematics 20, Springer, Berlin, 1966.

    Google Scholar 

  15. Hartshorne, R.: Algebraic Geometry, Springer, New York/Heidelberg, 1977.

    Google Scholar 

  16. Hilton, P. J. and Stammbach, U.: A Course in Homological Algebra, 2nd ed., Graduate Texts in Mathematics 4, Springer, New York, 1971.

    Google Scholar 

  17. Knus, M.-A.: Quadratic and Hermitian Forms over Rings, Grundlehren No. 294, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  18. Laudal, O. A.: Sur les limites projectives et inductives, Annales Scientifiques de l'École Normale Supérieure 82 (1965), 241-296.

    Google Scholar 

  19. Lazard, D.: Autour de la platitude, Bull. Soc. Math. France 97 (1969), 81-128.

    Google Scholar 

  20. MacLane, S.: Natural associativity and commutativity, Rice Univ. Studies 49(4) (1963), 28-46.

    Google Scholar 

  21. McConnell, J. C. and Robson, J. C.: Homomorphisms and extensions of modules over certain differential polynomial rings, J. Algebra 26 (1973), 319-342.

    Google Scholar 

  22. McConnell, J. C. and Robson, J. C.: Noncommutative Noetherian Rings (with the cooperation of L. W. Small), Wiley, Chichester, 1987.

    Google Scholar 

  23. Nöbeling, G.: Ñber die derivierten des inversen und des direkten Limes einer Modulfamilie, Topology 1 (1962), 47-61.

    Google Scholar 

  24. Popescu, N.: Abelian Categories with Applications to Rings and Modules, Academic Press, London, 1973.

    Google Scholar 

  25. Resco, R. and Small, L. W.: Affine Noetherian algebras and extensions of the base field, Bull. London Math. Soc. 25 (1993), 549-552.

    Google Scholar 

  26. Roos, J.-E.: Sur les foncteurs dérivés de lim, C. R. Acad. Sci. Paris 252 (1961), 3702-3704.

    Google Scholar 

  27. Roos, J.-E.: Locally Noetherian categories and generalized strictly linearly compact rings. Applications, In: Category Theory, Homology Theory and their Applications II, Battelle Conf. Seattle, 1968, Vol. 2, Springer, Berlin, 1969, pp. 197-277.

    Google Scholar 

  28. Rosenberg, A.: Non-commutative Algebraic Geometry and Representations of Quantized Algebras, Math. and its Applications, Vol. 330, Kluwer, Dordrecht, 1995.

    Google Scholar 

  29. Schlessinger, A.: Functors of Artin rings, Transactions of the AMS 130 (1968), 208-222.

    Google Scholar 

  30. Stafford, J. T.: Nonholonomic modules over Weyl algebras and enveloping algebras, Invent. Math. 79(3) (1985), 619-638.

    Google Scholar 

  31. Stenström, B.: Rings of Quotients, Grundlehren 217, Springer, Berlin, 1975.

    Google Scholar 

  32. Van den Bergh, M.: Blowing up of non-commutative smooth surfaces, Mem. Amer. Math. Soc. (to appear).

  33. Waterhouse, W. C.: Introduction to Affine Group Schemes, Graduate Texts No. 66, Springer, 1979.

  34. Weibel, C. A.: An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, 1994.

  35. Yekutieli, A. and Zhang, J. J.: Serre duality for noncommutative projective schemes, Proc. Amer. Math. Soc. 125(3) (1997), 697-707.

    Google Scholar 

  36. Zariski, O.: Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields, Mem. Amer. Math. Soc. 5 (1951).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artin, M., Zhang, J.J. Abstract Hilbert Schemes. Algebras and Representation Theory 4, 305–394 (2001). https://doi.org/10.1023/A:1012006112261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012006112261

Navigation