Advertisement

Sampling strategy to develop a core collection of Uruguayan maize landraces based on morphological traits

Abstract

Core collections were suggested to improve germplasmutilization. A core collection is a subset chosen to represent thediversity of a collection with a minimum of redundancies. Becausediversity is distributed between and within groups with differentdegrees of organization, an adequate classification of accessionsinto related groups should be performed prior to the selection of acore collection. Different classification strategies for theUruguayan Maize Collection were compared, and the best one was usedto select a core collection. The following classification strategieswere compared following a multivariate approach using the availablemaize data base: i) racial classification, ii) geographicorigin (south and north of the country), and iii) acombination of kernel type and geographic origin. The third optionwas considered the best classification rule, since it takes intoaccount two points which are closely related to the distribution ofdiversity: genotypic composition and geographic origin. The followingfive groups were identified in the collection: a) pop, b)floury, c) dent, d) southern flint-semiflints, ande) northern flint-semiflints. Eight core collections,each of 90 accessions, were selected, using different strategies toweight the groups in the core and to select the accessions from thegroups. The P, C, and L strategies were used and combined with eitherrandom selection within the group or the Relative Diversity method.Two samples of 90 accessions were obtained at random withoutconsidering the classification. The Relative Diversity methodcombined with the L strategy produced the best core collection, as itretained the highest percentage of the ranges for the 17 variablesincluded in the analysis. On average, 91% of the ranges wereretained in the core, confirming its representativeness.

This is a preview of subscription content, log in to check access.

References

  1. Abadie T., Vivo G. and Olveyra M. 1997. Uruguay LAMP final report. In: Salhuana W. et al. (eds), LAMP final report. Pioneer Hi-Bred Intl. Spec. Publ. G12083, Johnston, IA 94–110.

  2. Abadie T., Magalhaea J.R., Cordeiro C., Parentoni S.N. and de Andrade R.V. 1998. A classification for Brazilian maize landraces. Plant Genetic Resources Newsletter 114: 43–44.

  3. Abadie T., Magalhaes J.R., Parentoni S.N., Cordeiro C. and de Andrade R.V. 1999. The core collection of maize germplasm of Brazil. Plant Genetic Resources Newsletter 117: 55–56.

  4. Allard R.W. 1992. Predictive methods for germplasm identification. In: Stalker H.T. and Murphy J.P. (eds), Plant Breeding in the 1990's. CAB International, Wallingford, Oxon, UK, pp. 119–146.

  5. Balfourier F., Prosperi J.M., Charmet G., Goulard M. and Monestiez P. 1999. Using spatial patterns of diversity to develop core collections. In: Johnson R.C. and Hodgkin T. (eds), Core collections for today and tomorrow. International Plant Genetic Resources Institute, Rome, Italy, pp. 37–48.

  6. Basigalup D.H., Barnes D.K. and Stucker R.E. 1995. Development of a Core Collection for perennial Medicago plant introductions. Crop Sci. 35: 1163–1168.

  7. Brieger F.G., Gurgel J.T.A., Paterniani E., Blumenschein A. and Alleoni M.R. 1958. Races of Maize in Brazil and other Eastern South American countries. National Academy of Science-National Research Council, Washington, D.C, Publication 593.

  8. Brown A.H.D. 1989a. The case for core collections. In: Brown A.H.D., Frankel O.H., Marshall D.R. and Williams J.R. (eds), The Use of Plant Genetic Resources. Cambridge University Press, Cambridge, UK, pp. 136–156.

  9. Brown A.H.D. 1989b. Core Collection: A practical approach to genetic resources management. Genome 30: 818–824.

  10. Brown A.H.D. 1995. The core collection at the crossroads. In: Hodgkin T., Brown A.H.D., van Hintum T.J.L. and Morales E.A.V. (eds), Core Collections of Plant Genetic Resources. John Wiley and Sons, New York, pp. 3–20.

  11. Crossa J., Taba S., Eberhart S.A., Bretting P. and Vencovsky R. 1994. Practical considerations for maintaining germplasm in maize. Theor. Appl. Gen. 89: 89–95.

  12. Crossa J., DeLacy I.H. and Taba S. 1995. The use of multivariate methods in developing a Core Collection. In: Hodgkin T., Brown A.H.D., van Hintum T.J.L. and Morales E.A.V. (eds), Core Collections of Plant Genetic Resources. John Wiley and Sons, New York, pp. 77–89.

  13. De María F., Fernández G. and Zoppolo G., Universidad de la RepúblicaUruguay 1979. Caracterización agronómica y clasificación racial de las muestras de maíz colectadas en Uruguay bajo el Proyecto IBPGR y Facultad de Agronomía. Tesis Ing. Agr.

  14. Diwan N., McIntosh M.S. and Bauchan G.R. 1995. Methods of developing a core collection of annual Medicago species. Theor. Appl. Gen. 90: 755–761.

  15. Fernández G., Frutos E. and Maiola C. 1983. Catálogo de Recursos Genéticos de Maíz de Sudamérica-Uruguay. E.E.R.A.-Pergamino INTA CIRF, Pergamino, Argentina.

  16. Frankel O.H. and Brown A.H.D. 1984. Plant genetic resources today: a critical appraisal. In: Holden J.H.W. and Williams J.T. (eds), Crop Genetic Resources: Conservation and Evaluation. Allen and Unwin, London, UK, pp. 249–257.

  17. Frankel O.H., Brown A.H.D. and Burdon J.J. 1995. The Conservation of Plant Biodiversity. Cambridge University Press, UK.

  18. Goodman M.M. 1976. Maize. In: Simmonds N.W (ed.), Evolution of Crop Plants. Longman Inc., New York, pp. 128–136.

  19. Goodman M.M. and Bird McK. 1977. The Races of Maize IV: Tentative Grouping of 219 Latin American Races. Economic Botany 31: 204–221.

  20. Hair, Jr. J., Anderson R., Tatham R. and Black W. 1995. Multivariate Data Analysis: with Readings. 4th edn. A. Simon & Schuster Company, Englewood Cliffs, New Jersey.

  21. Hamon S., Dussert S., Noirot M., Anthony F. and Hodgkin T. 1995. Core Collections-accomplishments and challeges Plant Breeding Abstracts 1995. 65 no. 8.

  22. Harch B.D., Brasford K.E., DeLacy I.H., Lawrence P.K. and Cruickshank A. 1995. Patterns of diversity in fatty acid composition in the Australian groundnut germplasm collection. Genet. Res. and Crop Evol. 42: 243–256.

  23. van Hintum T.J.L. 1995. Hierarchical approaches to the analysis of genetic diversity in crop plants. In: Hodgkin T., Brown A.H.D., van Hintum T.J.L. and Morales E.A.V. (eds), Core Collections of Plant Genetic Resources. John Wiley and Sons, New York, pp. 23–34.

  24. van Hintum T.J.L. 1999. The general methodology for creating a core collection. In: Johnson R.C. and Hodgkin T. (eds), Core collections for today and tomorrow. International Plant Genetic Resources Institute, Rome, Italy, pp. 10–17.

  25. Hodgkin T., Brown A.H.D., van Hintum T.J.L. and Morales E.A.V. 1995. Future directions. In: Hodgkin T., Brown A.H.D., van Hintum T.J.L. and Morales E.A.V. (eds), Core Collections of Plant Genetic Resources. John Wiley and Sons, New York, pp. 253–259.

  26. Hodgkin T. 1997. Some current issues in the conservation and use of plant genetic resources. In: Ayad W.G., Hodgkin T., Jaradat A. and Rao V.R. (eds), Molecular genetic techniques for plant genetic resources. Report of an IPGRI Workshop, 9-11 October 1995. Rome, Italy, pp. 3–10.

  27. Holbrook C.C., Anderson W.F. and Pittman R.N. 1993. Selection of a Core Collection from the US Germplasm Collection of Peanut. Crop Science 33: 859–861.

  28. Johnson R.C., Johnston W.J., Nelson M.C., Simon C.J. and Golob C.T. 1999. Core utilization and development-an example with Poa pratensis L. In: Johnson R.C. and Hodgkin T. (eds), Core collections for today and tomorrow. International Plant Genetic Resources Institute, Rome, Italy, pp. 49–60.

  29. Kleka W. 1980. Discriminant analysis Sage University Paper series on Quantitative Applications in the Social Sciences. Sage Publications, Beverly Hills and London 07-019.

  30. Malosetti M., Abadie T. and Germán S. 2000. Comparing strategies for selecting a core subset for the Uruguayan Barley Collection. Plant Genetic Resources Newsletter 121: 20–26.

  31. Paterniani E. and Goodman M.M. 1977. Races of maize in Brazil and adjacent areas. CIMMYT, Mexico, D.F.

  32. Salhuana W., Pollak L.M., Ferrer M., Paratori O. and Vivo G. 1998. Breeding Potential of Maize Accessions from Argentina, Chile, USA, and Uruguay. Crop Sci. 38: 866–872.

  33. Schoen D.J. and Brown A.H.D. 1991. Intraspeci.c variation in a population diversity and effective population size correlates with the mating system. Proc. Nac. Acad. of Sci. USA 88: 4494–4497.

  34. Spagnoletti Zeuli P.L. and Qualset C.O. 1995. The durum wheat core collection and the plant breeder. In: Hodgkin T., Brown A.H.D., van Hintum T.J.L. and Morales E.A.V. (eds), Core Collections of Plant Genetic Resources. John Wiley and Sons, New York, pp. 213–228.

  35. Spagnoletti Zeuli P.L. and Qualset C.O. 1993. Evaluation of five strategies for obtaining a core subset from a large genetic resource of durum wheat. Theor. Appl. Gen. 78: 295–304.

  36. Yonezawa K., Nomura T. and Morishima M. 1995. Sampling strategies for use in strati.ed germplasm collections. In: Hodgkin T., Brown A.H.D., van Hintum T.J.L. and Morales E.A.V. (eds), Core Collections of Plant Genetic Resources. John Wiley and Sons, New York, pp. 35–53.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Malosetti, M., Abadie, T. Sampling strategy to develop a core collection of Uruguayan maize landraces based on morphological traits. Genetic Resources and Crop Evolution 48, 381–390 (2001). https://doi.org/10.1023/A:1012003611371

Download citation

  • Core collection
  • Germplasm utilization
  • Landrace
  • Maize
  • Uruguay
  • Zea mays