Advertisement

Space Science Reviews

, Volume 96, Issue 1–4, pp 197–230 | Cite as

The Accretion, Composition and Early Differentiation of Mars

  • A.N. Halliday
  • H. Wänke
  • J.-L. Birck
  • R.N. Clayton
Article

Abstract

The early development of Mars is of enormous interest, not just in its own right, but also because it provides unique insights into the earliest history of the Earth, a planet whose origins have been all but obliterated. Mars is not as depleted in moderately volatile elements as are other terrestrial planets. Judging by the data for Martian meteorites it has Rb/Sr ≈ 0.07 and K/U ≈ 19,000, both of which are roughly twice as high as the values for the Earth. The mantle of Mars is also twice as rich in Fe as the mantle of the Earth, the Martian core being small (∼20% by mass). This is thought to be because conditions were more oxidizing during core formation. For the same reason a number of elements that are moderately siderophile on Earth such as P, Mn, Cr and W, are more lithophile on Mars. The very different apparent behavior of high field strength (HFS) elements in Martian magmas compared to terrestrial basalts and eucrites may be related to this higher phosphorus content. The highly siderophile element abundance patterns have been interpreted as reflecting strong partitioning during core formation in a magma ocean environment with little if any late veneer. Oxygen isotope data provide evidence for the relative proportions of chondritic components that were accreted to form Mars. However, the amount of volatile element depletion predicted from these models does not match that observed — Mars would be expected to be more depleted in volatiles than the Earth. The easiest way to reconcile these data is for the Earth to have lost a fraction of its moderately volatile elements during late accretionary events, such as giant impacts. This might also explain the non-chondritic Si/Mg ratio of the silicate portion of the Earth. The lower density of Mars is consistent with this interpretation, as are isotopic data. 87Rb-87Sr, 129I-129Xe, 146Sm-142Nd, 182Hf-182W, 187Re-187Os, 235U-207Pb and 238U-206Pb isotopic data for Martian meteorites all provide evidence that Mars accreted rapidly and at an early stage differentiated into atmosphere, mantle and core. Variations in heavy xenon isotopes have proved complicated to interpret in terms of 244Pu decay and timing because of fractionation thought to be caused by hydrodynamic escape. There are, as yet, no resolvable isotopic heterogeneities identified in Martian meteorites resulting from 92Nb decay to 92Zr, consistent with the paucity of perovskite in the martian interior and its probable absence from any Martian magma ocean. Similarly the longer-lived 176Lu-176Hf system also preserves little record of early differentiation. In contrast W isotope data, Ba/W and time-integrated Re/Os ratios of Martian meteorites provide powerful evidence that the mantle retains remarkably early heterogeneities that are vestiges of core metal segregation processes that occurred within the first 20 Myr of the Solar System. Despite this evidence for rapid accretion and differentiation, there is no evidence that Mars grew more quickly than the Earth at an equivalent size. Mars appears to have just stopped growing earlier because it did not undergo late stage (>20 Myr), impacts on the scale of the Moon-forming Giant Impact that affected the Earth.

Keywords

Volatile Element Magma Ocean Giant Impact High Phosphorus Content Martian Meteorite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrens, T.J.:1990, 'Earth Accretion', in H.E. Newsom and J.H. Jones (eds.), Origin of the Earth, Oxford Univ. Press, Oxford, pp. 211-227.Google Scholar
  2. Allègre, C.J., Poirier, J.-P., Humler, E., and Hofmann, A.W.:1995, 'The Chemical Composition of the Earth', Earth Planet. Sci. Lett. 134, 515-526.Google Scholar
  3. Benz, W.:2000, 'Low Velocity Collisions and the Growth of Planetesimals', in W. Benz, R. Kallenbach, and G.W. Lugmair (eds.), From Dust to Terrestrial Planets, Space Sci. Rev. 92, 279-294.Google Scholar
  4. Benz, W., and Cameron, A.G.W.:1990, 'Terrestrial Effects of the Giant Impact', in H.E. Newsom and J.H. Jones (eds.), Origin of the Earth, Oxford Univ. Press, Oxford, 61-67.Google Scholar
  5. Benz, W., Cameron, A.G.W., and Slattery, W.L.:1987, 'Collisional Stripping of Mercury's Mantle', Icarus 74, 516-528.Google Scholar
  6. Bertka, C.M., and Fei, Y.J.:1997, 'Mineralogy of the Martian Interior up to Core-mantle Boundary Pressures', J. Geophys. Res. 102, 5251-5264.Google Scholar
  7. Birck, J.-L., and Allègre, C.J.:1988, 'Manganese-chromium Isotope Systematics and the Developement of the Early Solar System', Nature 331, 579-584.Google Scholar
  8. Birck, J.-L., and Allègre, C.J.:1994, 'Contrasting Re/Os Fractionation in Planetary Basalts', Earth Planet. Sci. Lett. 124, 139-148.Google Scholar
  9. Birck, J.L., Rotaru, M., and Allègre, C.J.:1999, 53Mn-53Cr Evolution of the Early Solar System', Geochim. Cosmochim. Acta 63, 4111-4117.Google Scholar
  10. Blichert-Toft, J., Gleason, J.D., Télouk, P., and Albarède, F.:1999, 'The Lu-Hf Isotope Geochemistry of Shergottites and the Evolution of the Martian Mantle-crust System', Earth Planet. Sci. Lett. 173, 25-39.Google Scholar
  11. Blum, J.:2000, 'Laboratory Experiments on Preplanetary Dust Aggregation', in W. Benz et al. (eds.), From Dust to Terrestrial Planets, Space Sci. Rev. 92, 265-278.Google Scholar
  12. Bogard, D.D., and Garrison, D.H.:1998, 'Relative Abundances of Argon, Krypton, and Xenon in the Martian Atmosphere as Measured in Martian Meteorites', Geochim. Cosmochim. Acta 62, 1829-1835.Google Scholar
  13. Borg, L.E., Nyquist, L.E., Taylor, L.A., Wiesmann, H., and Shih, C.-Y.:1997, 'Constraints on Martian Differentiation Processes from Rb-Sr and Sm-Nd Isotopic Analyses of the Basaltic Shergottite QUE94201', Geochim. Cosmochim. Acta 61, 4915-4931.Google Scholar
  14. Boss, A.P.:1990, '3D Solar Nebula Models: Implications for Earth Origin', in H.E. Newsom and J.H. Jones (eds.), Origin of the Earth, Oxford Univ. Press, Oxford, pp. 3-15.Google Scholar
  15. Brandon, A.D., Walker, R.J, Morgan, J.W., and Goles, G.G.:2000, 'Re-Os Isotopic Evidence for Early Differentiation of the Martian Mantle', Geochim. Cosmochim. Acta 64, 4083-4095.Google Scholar
  16. Breuer, D., Spohn, T., and Wüllner, U.:1993, 'Mantle Differentiation and the Crustal Dichotomy of Mars', Planet. Space Sci. 41, 269-283.Google Scholar
  17. Breuer, D., Yuen, D.A., and Spohn, T.:1997, 'Phase Transitions in the Martian Mantle: Implications for Partially Layered Convection', Earth Planet. Sci. Lett. 148, 457-469.Google Scholar
  18. Cameron, A.G.W., and Ward:1976, 'The Origin of the Moon', Lunar Science 7, Lunar Science Institute, Houston.Google Scholar
  19. Cameron, A.G.W., and Benz, W.:1991, 'Origin of the Moon and the Single Impact Hypothesis IV.', Icarus 92, 204-216.Google Scholar
  20. Canup, R.M., and Agnor, C.:1998, 'Accretion of Terrestrial Planets and the Earth-moon System', Origin of the Earth and Moon, LPI Contribution 597, LPI, Houston, pp. 4-7.Google Scholar
  21. Carr, M.H.:1973, 'Volcanism on Mars', J. Geophys. Res. 78, 4049-4062.Google Scholar
  22. Carr, M.H.:1999, 'Retention of an Atmosphere on Early Mars', J. Geophys. Res. 104, 21,897-21,909.Google Scholar
  23. Carr, M.H., and Wänke, H.:1992, 'Earth and Mars: Water Inventories as Clues to Accretional Histories', Icarus 98, 61-71.Google Scholar
  24. Cassen, P., and Woolum, D.S.:1997, 'Nebular Fractionations and Mn-Cr Systematics', Proc. 28 th Lunar Planet. Sci. Conf., 211-212.Google Scholar
  25. Chen, J.H., and Wasserburg, G.J.:1986, 'Formation Ages and Evolution of Shergotty and its Parent Planet from U-Th-Pb Systematics', Geochim. Cosmochim. Acta 50, 955-968.Google Scholar
  26. Christie, D.M., Carmichael, I.S.E., and Langmuir, C.H.:1986, 'Oxidation States of Mid-ocean Ridge Basalt Glasses', Earth Planet. Sci. Lett. 79, 397-417.Google Scholar
  27. Clark, S.P., Jr., Turekian, K.K., and Grossman, L.:1972, 'Model for the Early History of the Earth', in E.C. Robertson (ed.), The Nature of the Solid Earth, McGraw Hill, pp. 3-18.Google Scholar
  28. Clayton, R.N.:1986, 'High Temperature Isotope Effects in the Early Solar System', in J.W. Valley, H.P. Taylor, and J.R. O'Neil (eds.), Stable Isotopes in High Temperature Geological Processes, Mineral. Soc. Am., Washington D.C., pp. 129-140.Google Scholar
  29. Clayton, R.N.:1993, 'Oxygen Isotopes in Meteorites', Ann. Rev. Earth Planet. Sci. 21, 115-149.Google Scholar
  30. Clayton, R.N., and Mayeda, T.K.:1996, 'Oxygen Isotope Studies of Achondrites', Geochim. Cosmochim. Acta 60, 1999-2017.Google Scholar
  31. Delano, J.W., and Arculus, R.J.:1980, 'Nakhla: Oxidation State and Other Constraints', Proc. 11 th Lunar Planet. Sci., 219-221.Google Scholar
  32. Dreibus, G, and Wänke, H.:1984, 'Accretion of the Earth and the Inner Planets', Proc. 27 th Int. Geol. Conf. 11, VNU Science Press, Utrecht, pp. 1-20.Google Scholar
  33. Dreibus, G., and Wänke, H.:1985, 'Mars: A Volatile Rich Planet', Meteoritics 20, 367-382.Google Scholar
  34. Dreibus, G., and Wänke, H.:1987, 'Volatiles on Earth and Mars: A Comparison', Icarus 71, 225-240.Google Scholar
  35. Franchi, I.A., Wright, I.P., Sexton, A.S., and Pillinger, C.T.:1999, 'The Oxygen Isotopic Composition of Earth and Mars', Met. Planet. Sci. 34, 657-661.Google Scholar
  36. Gaetani, G.A., and Grove, T.L.:1997, 'Partitioning of Moderately Siderophile Elements Among Olivine, Silicate Melt and Sulfide Melt:Constraints on Core Formation in the Earth and Mars', Geochim. Cosmochim. Acta 61, 1829-1846.Google Scholar
  37. Galy, A., Young, E.D., Ash, R.D., and O'Nions, R.K.:2000, 'High Precision Magnesium Isotopic Composition of Allende Material:A Multiple Collector Inductively Coupled Mass Spectrometry Study', Lunar Planet. Sci. 31, 1193-1194.Google Scholar
  38. Gilmour, J.D., Whitby, J.A., and Turner, G.:1998, 'Xenon Isotopes in Irradiated ALH84001: Evidence for Shock-induced Trapping of Ancient Martian Atmosphere', Geochim. Cosmochim. Acta 62, 2555-2571.Google Scholar
  39. Grossman, L.:1972, 'Condensation in the Primitive Solar Nebula', Geochim. Cosmochim. Acta 36, 597-619.Google Scholar
  40. Grossman, L., and Larrimer, J.W.:1974, 'Early Chemical History of the Solar System', Rev. Geophys. Space Phys. 12, 71-101.Google Scholar
  41. Haggerty, S.R.:1981, 'Opaque Mineral Oxides in Terrestrial Igneous Rocks', Oxide Minerals, Miner. Soc. Am., pp. Hg101-Hg278.Google Scholar
  42. Halliday, A.N.:2000a, 'Terrestrial Accretion Rates and the Origin of the Moon', Earth Planet. Sci. Lett. 176, 17-30.Google Scholar
  43. Halliday, A.N.:2000b, 'Hf-W Chronometry and Inner Solar System Accretion Rates', in W. Benz et al. (eds.), From Dust to Terrestrial Planets, Space Sci. Rev. 92, 355-370.Google Scholar
  44. Halliday, A.N., and Lee, D.-C.:1999, 'Tungsten Isotopes and the Early Development of the Earth and Moon', Geochim. Cosmochim. Acta, (C.J. Allègre 60th Birthday Volume) 63, 4157-4179.Google Scholar
  45. Halliday, A.N., and Porcelli, D.:2001, 'In Search of Lost Planets-the Paleocosmochemistry of the Inner Solar System', Earth Planet. Sci. Lett., in submission.Google Scholar
  46. Halliday, A.N., Rehkämper, M., Lee, D.-C., and Yi, W.:1996, 'Early Evolution of the Earth and Moon: New Constraints from Hf-W Isotope Geochemistry', Earth Planet. Sci. Lett. 142, 75-90.Google Scholar
  47. Harder, H., and Christensen, U.R.:1996, 'A One-plume Model of Martian Mantle Convection', Nature 380, 507-509.Google Scholar
  48. Harper, C.L., and Jacobsen, S.B.:1996, 'Evidence for 182Hf in the Early Solar System and Constraints on the Timescale of Terrestrial Core Formation', Geochim. Cosmochim. Acta 60, 1131-1153.Google Scholar
  49. Harper, C.L., Völkening, J., Heumann, K.G., Shih, C.-Y., and Wiesmann, H.:1991, 182Hf-182W: New Cosmochronometric Constraints on Terrestrial Accretion, Core Formation, the Astrophysical Site of the r-Process, and the Origin of the Solar System', Proc. 22 nd Lunar Planet. Sci. Conf., 515-516.Google Scholar
  50. Harper, C.L., Nyquist L.E., Bansal, B., Wiesmann, H., and Shih, C.-Y.:1995, 'Rapid Accretion and Early Differentiation of Mars Indicated by 142Nd/144Nd in SNC Meteorites', Science 267, 213-217.Google Scholar
  51. Hartmann, W.K., and Davis, D.R.:1975, 'Satellite-sized Planetesimals and Lunar Origin', Icarus 24, 504.Google Scholar
  52. Hewins, R.H., and Ulmer, G.C.:1983, 'Intrinsic Oxygen Fugacity Measurements for Clasts in Diogenites and Mesosiderites', Proc. 14 th Lunar Planet. Sci. Conf., 311-312.Google Scholar
  53. Higuchi, H., and Morgan, J.W.:1975, 'Ancient Meteoritic Component in Apollo 17 Boulder', Proc. 6 th Lunar Planet. Sci. Conf., 1625-1651.Google Scholar
  54. Hinton, R.W., and Bischoff, A.:1984, 'Ion Microprobe Magnesium Isotope Analysis of Plagioclase and Hibonite from Ordinary Chondrites', Nature 308, 169-172.Google Scholar
  55. Hinton, R.W., Davis, A.M., Scatena-Wachel, D.E., Grossman, L., and Draus, R.J.:1988, 'A Chemical and Isotopic Study of Hibonite-rich Refractory Inclusions in Primitive Meteorites', Geochim. Cosmochim. Acta 52, 2573-2598.Google Scholar
  56. Hofmann, A.W., Jochum, K.P., Seufert, M., and White, W.M.:1986, 'Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution', Earth Planet. Sci. Lett. 79, 33-45.Google Scholar
  57. Horan, M.F., Smoliar, M.I., and Walker, R.J.:1998, 182W and 187Re-187Os Systematics of Iron Meteorites:Chronology for Melting, Differentiation, and Crystallization in Asteroids', Geochim. Cosmochim. Acta 62, 545-554.Google Scholar
  58. Hunten, D.M., Pepin, R.O., and Walker, J.G.C.:1987, 'Mass Fractionation in Hydrodynamic Escape', Icarus 69, 532-549.Google Scholar
  59. Huss, G.R.:1988, 'The Role of Presolar Dust in the Formation of the Solar System', Earth, Moon, and Planets 40, 165-211.Google Scholar
  60. Jacobsen, S.B., and Harper, Jr., C.L.:1996, 'Accretion and Early Differentiation History of the Earth Based on Extinct Radionuclides', in A. Basu and S. Hart (eds.), Earth Processes: Reading the Isotope Code, AGU, Washington D.C., pp. 47-74.Google Scholar
  61. Jagoutz, E., Sorowka, A., Vogel, J.D., and Wänke, H.:1994, 'ALH84001: Alien or Progenitor of the SNC Family?', Meteoritics 28, 548-479.Google Scholar
  62. Jakosky, B.M., and Jones, J.H.:1997, 'The History of Martian Volatiles', Rev. Geophys. 35, 1-16.Google Scholar
  63. Kato, T., Ringwood, A.E., and Irifune, T.:1988, 'Experimental Determination of Element Partitioning Between Silicate Perovskites, Garnets and Liquids:Constraints on Early Differentiation of the Mantle', Earth Planet. Sci. Lett. 89, 123-145.Google Scholar
  64. Kitts, K., and Lodders, K.:1998, 'Survey and Evaluation of Eucrite Bulk Compositions', Met. Planet. Sci. 33 Suppl., A197-A213.Google Scholar
  65. Lee, D.-C., and Halliday, A.N.:1995, 'Hafnium-tungsten Chronometry and the Timing of Terrestrial Core Formation', Nature 378, 771-774.Google Scholar
  66. Lee, D.-C., and Halliday, A.N.:1996, 'Hf-W Isotopic Evidence for Rapid Accretion and Differentiation in the Early Solar System', Science 274, 1876-1879.Google Scholar
  67. Lee, D.-C., and Halliday, A.N.:1997, 'Core Formation on Mars and Differentiated Asteroids', Nature 388, 854-857.Google Scholar
  68. Lee, D.-C., and Halliday, A.N.:2000a, 'Hf-W Isotopic Systematics of Ordinary Chondrites and the Initial 182Hf/180Hf of the Solar System', Chem. Geol. (G.J. Wasserburg Spec. Iss.) 169, 35-43.Google Scholar
  69. Lee, D.-C., and Halliday, A.N.:2000b, 'Accretion of Primitive Planetesimals: Hf-W Isotopic Evidence from Enstatite Chondrites', Science 288, 1629-1631.Google Scholar
  70. Lee, T., Papanastassiou, D.A., and Wasserburg, G.J.:1977, 'Aluminum-26 in the Early Solar System: Fossil or Fuel?', Astrophys. J. 322, L107-L110.Google Scholar
  71. Lee, T., Shu, F.H., Shang, H., Glassgold, A.E., and Rehm, K.E.:1998, 'Protostellar Cosmic Rays and Extinct Radioactivities in Meteorites', Astrophys. J. 506, 898-912.Google Scholar
  72. Lewis, J.S.:1972, 'Metal/silicate Fractionation in the Solar System', Earth Planet. Sci. Lett. 15, 286-290.Google Scholar
  73. Lin, D.N.C., and Papaloizou, J.:1985, 'On the Dynamical Origin of the Solar System', in D.C. Black and M.S. Matthews (eds.), Protostars and Planets II, 981-1072, Univ. Arizona Press, Tucson, pp. 981-1072.Google Scholar
  74. Lodders, K.:1998, 'A Survey of Shergottite, Nakhlite and Chassigny Meteorites Whole-rock Compositions', Met. Planet. Sci. 33 Suppl., A183-A190.Google Scholar
  75. Lodders, K.:2000, 'An Oxygen Isotope Mixing Model for the Accretion and Composition of Rocky Planets', in W. Benz et al. (eds.), From Dust to Terrestrial Planets, Space Sci. Rev. 92, 341-354.Google Scholar
  76. Lodders, K., and Fegley, B.:1997, 'An Oxygen Isotope Model for the Composition of Mars', Icarus 126, 373-394.Google Scholar
  77. Longhi, J., and Pan, V.:1989, 'The Parent Magmas of the SNC Meteorites', Proc. 19 th Lunar Planet. Sci. Conf., Cambridge Univ. Press, Cambridge, pp. 451-464.Google Scholar
  78. Longhi, J., Knittle, E., Holloway, J.R., and Wänke, H.:1992, 'The Bulk Composition, Mineralogy and Internal Structure of Mars', in H.H. Kieffer, B.M. Jakosky, C.W. Snyder, and M.S. Matthews (eds.), Mars, Univ. Arizona Press, Tucson, pp. 84-208.Google Scholar
  79. Lugmair, G.W., and Galer, S.J.G.:1992, 'Age and Isotopic Relationships Among the Angrites Lewis Cliff-86010 and Angra Dos Reis', Geochim. Cosmochim. Acta 56, 1673-1694.Google Scholar
  80. Lugmair, G.W., and Shukolyukov, A.:1998, 'Early Solar System Timescales According to 53Mn-53Cr Systematics', Geochim. Cosmochim. Acta 62, 2863-2886.Google Scholar
  81. Marti, K., Kim, J.S., Thakur, A.N., McCoy, T.J., and Keil, K.:1995, 'Signatures of the Martian Atmosphere in Glass of the Zagami Meteorite', Science 267, 1981-1984.Google Scholar
  82. Matthew, K.J., and Marti, K.:2001, 'Early Evolution of Martian Volatiles: Nitrogen and Noble Gas Components in ALH84001 and Chassigny', J. Geophys. Res., in press.Google Scholar
  83. McDonough, W.F., and Sun, S.-S.:1995, 'The Composition of the Earth', Chem. Geol. 120, 223-253.Google Scholar
  84. Melosh, H.J.:1990, 'Giant Impacts and the Thermal State of the Early Earth, in H.E. Newsom and J.H. Jones (eds.), Origin of the Earth, Oxford Univ. Press, Oxford, pp. 69-83.Google Scholar
  85. Melosh, H.J., and Vickery, A.M.:1989, 'Impact Erosion of the Primordial Atmosphere of Mars', Nature 338, 487-489.Google Scholar
  86. Melosh, H.J., Vickery, A.M., and Tonks, W.B.:1993, 'Impacts and the Early Environment and Evolution of the Terrestrial Planets', in E.H. Levy and J.I. Lunini (eds.), Protostars and Planets III, Univ. Arizona Press, Tucson, 1339-1370.Google Scholar
  87. Minarik, W.G., Ryerson, F.J., and Watson, E.B.:1996, 'Textural Entrapment of Core-forming Melts', Science 272, 530-533.Google Scholar
  88. Münker, C., Weyer, S., Mezger, K., Rehkämper, M., Wombacher, F., and Bischoff, A.:2000, 92Nb-92Zr and the Early Differentiation History of Planetary Bodies', Science 289, 1538-1542.Google Scholar
  89. Newsom, H.E.:1990, 'Accretion and Core Formation in the Earth:Evidence from Siderophile Elements', in H.E. Newsom and J.H. Jones (eds.), Origin of the Earth, Oxford Univ. Press, Oxford, pp. 273-288.Google Scholar
  90. Newsom, H.E.:1995, 'Composition of the Solar System, Planets, Meteorites, and Major Terrestrial Reservoirs', Global Earth Physics, A Handbook of Physical Constants, AGU Reference Shelf 1, American Geophysical Union.Google Scholar
  91. Newsom, H.E., White, W.M., Jochum, K.P., and Hofmann, A.W.:1986, 'Siderophile and Chalcophile Element Abundances in Oceanic Basalts, Pb Isotope Evolution and Growth of the Earth's core', Earth Planet. Sci. Lett. 80, 299-313.Google Scholar
  92. Newsom, H.E., Sims, K.W.W., Noll, Jr., P.D., Jaeger, W.L., Maehr, S.A., and Bessera, T.B.:1996, 'The Depletion of W in the Bulk Silicate Earth', Geochm. Cosmochim. Acta 60, 1155-1169.Google Scholar
  93. Nichols:2000, 'Short-lived Radionuclides in Meteorites:Constraints of Nebular Timescales for the Production of Solids', in W. Benz et al. (eds.), From Dust to Terrestrial Planets, Space Sci. Rev. 92, 113-122.Google Scholar
  94. Nyquist, L.E., Bansal, B., Wiesmann, H., and Shih, C.-Y.:1994, 'Neodymium, Strontium and Chromium Isotopic Studies of the LEW86010 and Angra-Dos-Reis Meteorites and the Chronology of the Angrite Parent Body', Meteoritics 29, 872-885.Google Scholar
  95. Nyquist, L.E., Lindstrom, D., Shih, C.-Y., Weismann, H., Mittlfelhdt, D., Wentworth, S., and Martinez, R.:1997, 'Mn-Cr Systematics of Chondrules from the Bishunpur and Chainpur Meteorites', Proc. 28 th Lunar Planet. Sci., 1033-1034.Google Scholar
  96. Ott, U.:1988, 'Noble Gases in SNC Meteorites: Shergotty, Nakhla, Chassigny', Geochim. Cosmochim. Acta 52, 1937-1948.Google Scholar
  97. Pepin, R.O.:1994, 'Evolution of the Martian Atmosphere', Icarus 111, 289-304.Google Scholar
  98. Quitté, G., Birck, J.-L., and Allègre, C.J.:2000, '182Hf-182W Systematics in Eucrites:The Puzzle of Iron Segregation in the Early Solar System', Earth Planet. Sci. Lett. 184, 83-94.Google Scholar
  99. Rammensee, W., and Wänke, H.:1977, 'On the Partition Coefficient of Tungsten Between Metal and Silicate and its Bearing on the Origin of the Moon', Proc. 8 th Lunar Sci. Conf., 399-409.Google Scholar
  100. Righter, K., and Drake, M.J.:1996, 'Core Formation in Earth's Moon, Mars, and Vesta', Icarus 124, 513-529.Google Scholar
  101. Ringwood, A.E.:1977, 'Composition of the Core and Implications for Origin of the Earth', Geochem. J. 11, 111-135.Google Scholar
  102. Ringwood, A.E.:1979, On the Origin of Earth and Moon, Springer, New York.Google Scholar
  103. Robert, F., Rejou-Michel, A., and Javoy, M.: 1992, 'Oxygen Isotope Homogeneity of the Earth:New Evidence', Earth Planet. Sci. Lett. 108, 1-10.Google Scholar
  104. Russell, S.S., Srinivasan, G., Huss, G.R., Wasserburg, G.J., and MacPherson, G.J.:1996, 'Evidence for Widespread 26Al in the Solar Nebula and Constraints for Nebula Time Scales', Science 273, 757-762.Google Scholar
  105. Safronov, V.S.:1954, 'On the Growth of Planets in the Protoplanetary Cloud', Astron. Zh. 31, 499-510.Google Scholar
  106. Sanloup, C., Blichert-Toft, J., Télouk, P., Gillet, P., and Albarède, F.:2000, 'Zr Isotope Anomalies in Chondrites and the Presence of Live 92Nb in the Early Solar System', Earth Planet. Sci. Lett. 184, 75-81.Google Scholar
  107. Sasaki, S., and Nakazawa, K.:1986, 'Metal-silicate Fractionation in the Growing Earth: Energy Source for the Terrestrial Magma Ocean', J. Geophys. Res. 91, 9231-9238.Google Scholar
  108. Sato, M.:1976, 'Oxygen Fugacity and Other Thermochemical Parameters of Apollo 17 High-Ti Basalts and Their Implications on the Reduction Mechanism', Proc. 7 th Lunar Planet. Sci. Conf., 1323-1344.Google Scholar
  109. Sato, M., Hickling, N.L., and McLane, J.E.:1973, 'Oxygen Fugacity Values of Apollo 12, 14 and 15 Lunar Samples and Reduced State of Lunar Magmas', Proc. 4 th Lunar Planet. Sci. Conf., 1061-1079.Google Scholar
  110. Shaw, G.H.:1978, 'Effects of Core Formation', Phys. Earth Plan. Inter. 16, 361-369.Google Scholar
  111. Shih, C.-Y., Nyquist, L.E., Bogard, D.D., Mckay, G.A., Wooden, J.L., Bansal, B.M., and Wiesmann, H.:1982, 'Chronology and Petrogenesis of Young Achondrites, Shergotty, Zagami and ALHA77005:Late Magmatism on a Geologically Active Planet', Geochim. Cosmochim. Acta 46, 2323-2344.Google Scholar
  112. Shu, F.H., Adams, F.C., and Lizano, S.:1987, 'Star Formation in Molecular Clouds-Observation and Theory', Ann. Rev. Astron. Astrophys. 25, 23-81.Google Scholar
  113. Shu, F.H., Shang, H., Glassgold, A.E., and Lee, T.:1997, 'X-rays and Fluctuating X-winds from Protostars', Science 277, 1475-1479.Google Scholar
  114. Sleep, N.H.:1994, 'Martian Plate Tectonics', J. Geophys. Res. 99, 5639-5655.Google Scholar
  115. Solomon, S.C.:1979, 'Formation, History, and Energetics of Cores in the Terrestrial Planets', Earth Planet. Sci. Lett. 19, 168-182.Google Scholar
  116. Stevenson, D.J.:1981, 'Models of the Earth's Core', Science 214, 611-619.Google Scholar
  117. Stevenson, D.J.:1990, 'Fluid Dynamics of Core Formation', in H.E. Newsom and J.H. Jones (eds.), Origin of the Earth, Oxford University Press, Oxford, pp. 231-249.Google Scholar
  118. Stolper, E.:1977, 'Experimental Petrology of Eucritic Meteorites', Geochim. Cosmochim. Acta 41, 587-611.Google Scholar
  119. Swindle, T.D., and Jones, J.H.:1997, 'The Xenon Isotopic Composition of the Primordial Martian Atmosphere:Contrib utions from Solar and Fission components', J. Geophys. Res. 102, 1671-1678.Google Scholar
  120. Taylor, S.R., and McLennan, S.M.:1985, The Continental Crust: Its Composition and Evolution, Blackwell Sci.Google Scholar
  121. Toksöz, M.N., and Hsui, A.T.:1978, 'Thermal History and Evolution of Mars', Icarus 34, 537-547.Google Scholar
  122. Treiman, A.H., Drake, M.J., Janssens, M.-J., Wolf, R., and Ebihara, M.:1986, 'Core Formation in the Earth and Shergottite Parent Body (SPB):Chemical Evidence from Basalts', Geochim. Cosmochim. Acta 50, 1071-1091.Google Scholar
  123. Treiman, A.H., Jones, J.H., and Drake, M.J.:1987, 'Core Formation in the Shergottite Parent Body and Comparison with the Earth', J. Geophys. Res. 92, 627-632.Google Scholar
  124. Turekian, K.K., and Clark, S.P., Jr.:1969, 'Inhomogeneous Accumulation of the Earth from the Primitive Solar Nebula', Earth Planet. Sci. Lett. 6, 346-348.Google Scholar
  125. Wänke, H.:1981, 'Constitution of Terrestrial Planets', Phil. Trans. R. Soc. Lond. A303, 287-302.Google Scholar
  126. Wänke, H., and Dreibus, G.:1988, 'Chemical Composition and Accretion History of Terrestrial Planets', Phil. Trans. R. Soc. Lond. A325, 545-557.Google Scholar
  127. Wänke, H., and Dreibus, G.:1994, 'Chemistry and Accretion of Mars', Phil. Trans. R. Soc. Lond A349, 285-293.Google Scholar
  128. Wänke, H., Dreibus, G., and Jagoutz, E.:1984, 'Mantle Chemistry and Accretion History of the Earth', in A. Kroner, G.N. Hanson, and A.M. Goodwin (eds.), Springer, New York, pp. 1-24.Google Scholar
  129. Wallace, P., and Carmichael, I.S.E.:1992, 'Sulfur in Basaltic Magmas', Geochim. Cosmochim. Acta 56, 1863-1874.Google Scholar
  130. Warren, P.H., and Kallemeyn, G.W.:1996, 'Siderophile Trace Elements in ALH84001, Other SNC Meteorites and Eucrites:Evidence for Heterogeneity, Possibly Time-linked, in the Mantle of Mars', Met. Planet. Sci. 31, 97-105.Google Scholar
  131. Warren, P.H., and Kallemeyn, G.W.:1997, 'Yamato-793605, EET79001, and Other Presumed Martian Meteorites:Compositional Clues to Their Origin', Antarct. Meteorite Res. 10, 61-81.Google Scholar
  132. Warren, P.H., Greenwood, J.P., Richardson, J.W., Rubin, A.E., and Verish, R.S.:2000, 'Geochemistry of Los Angeles, a Ferroan, La-and Th-rich Basalt from Mars', Proc. 31 st Lunar Planet. Sci. Conf., LPI, Houston, abstract #2001 (CD-ROM).Google Scholar
  133. Wetherill, G.W.:1986, 'Accumulation of the Terrestrial Planets and Implications Concerning Lunar Origin', in W.K. Hartmann, R.J. Phillips, and G.J. Taylor (eds.), Origin of the Moon, LPI, Houston, pp. 519-550.Google Scholar
  134. Wetherill, G.W.:1994a, 'Provenance of the Terrestrial Planets', Geochim. Cosmochim. Acta 58, 4513-4520.Google Scholar
  135. Wetherill, G.W.:1994b, 'Possible Consequences of Absences of “Jupiters” in Planetary Systems', Astrophys. Space Sci. 212, 23-32.Google Scholar
  136. Wolf, R., Woodrow, A., and Anders, E.:1979, 'Lunar Basalts and Pristine Highland Rocks: Comparison of Siderophile and Volatile Elements', Proc. 10 th Lunar Planet. Sci. Conf., 2107-2130.Google Scholar
  137. Yi, W., Halliday, A.N., Alt, J.C., Lee, D.-C., Rehkämper, M., Garcia, M., Langmuir, C., and Su, Y.:2000, 'Cadmium, Indium, Tin, Tellurium and Sulfur in Oceanic Basalts:Implications for Chalcophile Element Fractionation in the Earth', J. Geophys. Res. 105, 18,927-18,948.Google Scholar
  138. Zahnle, K.J.:1993, 'Xenological Constraints on the Impact Erosion of the Early Martian Atmosphere', J. Geophys. Res. 98, 10,899-10,913.Google Scholar
  139. Zharkov, V.N.:1996, 'The Internal Structure of Mars: A Key to Understanding the Origin of Terrestrial Planets', Sol. Syst. Res. 30, 456-465.Google Scholar
  140. Zinner, E., and Göpel, C.:1992, 'Evidence for 26Al in Feldspars from the H4 Chondrite Ste Marguerite', Meteoritics 27, 311.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • A.N. Halliday
    • 1
  • H. Wänke
    • 2
  • J.-L. Birck
    • 3
  • R.N. Clayton
    • 4
  1. 1.Institute for Isotope Geology and Mineral Resources, Department of Earth SciencesETH Zentrum, NO C61Zürich
  2. 2.Max-Planck-Institut für ChemieMainzGermany
  3. 3.Laboratoire de Géochimie-CosmochimieIPGPCedex 05, ParisFrance
  4. 4.Enrico Fermi InstituteUniversity of ChicagoChicagoUSA

Personalised recommendations