, Volume 128, Issue 3, pp 245–285 | Cite as

Objectivity Over Objects: A Case Study In Theory Formation

  • Kai Hauser


Theory Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benacerraf, P.: 1983, 'Mathematical Truth', J. of Philosophy 70, 661–680. Reproduced in Benacerraf and Putnam, 1983, 403–420.Google Scholar
  2. Benacerraf, P. and H. Putnam (eds): 1983, Philosophy of Mathematics: Selected Readings, 2nd edn., Cambridge University Press, Cambridge.Google Scholar
  3. Boolos, G.: 1971, 'The Iterative Conception of Set', J. of Philosophy 68, 215–232, reproduced in Benacerraf and Putnam, 1983, 486–502.Google Scholar
  4. Cantor, G.: 1878, 'Ein Beitrag zur Mannigfaltigkeitslehre', Crelles Journal f. Mathematik 84, 242–258.Google Scholar
  5. Cantor, G.: 1895, 'Beiträge zur Begründung der transfiniten Mengenlehre', Math. Annalen 46, 481–512.Google Scholar
  6. Cantor, G.: Letter to Dedekind (1899), Engl. translation in J. van Heijenoort (ed.), From Frege to Gödel. A Source Book in Mathematical Logic, 18791931, Harvard University Press, Cambridge MA (1967), pp. 113–117.Google Scholar
  7. Christensen, D.: 1999, 'Measuring Confirmation', J. of Philosophy 96, 437–461.Google Scholar
  8. Cohen, Paul J.: 1963, 1964, 'The Independence of the Continuum Hypothesis I & II', Proc. Natl. Acad. Sci., U.S.A. 50, 51, 1143–1148, 105–110.Google Scholar
  9. Feferman, S.: 'Does Mathematics Need New Axioms?', American Mathematical Monthly 106, 99–111.Google Scholar
  10. Føllesdal, D.: 1988, Husserl on Evidence and Justification, Studies in the History of Philosophy 18, The Catholic University of America Press, Washington, D.C.Google Scholar
  11. Foreman, M.: 1999, 'Generic Large Cardinals: New Axioms for Mathematics', in Documenta Mathematica, extra volume ICM 1998, II, Deutsche Mathematiker Vereinigung, 11–21.Google Scholar
  12. Glymour, C.: 1980, Theory and Evidence, Princeton University Press, Princeton, pp. 383.Google Scholar
  13. Gödel, K.: 1938, 'The Consistency of the Axiom of Choice and the Generalized Continuum Hypothesis', Proc. Natl. Acad. Sci., U.S.A. 24, 556–557.Google Scholar
  14. Gödel, K.: 1990, 'Remarks before the Princeton Bicentennial Conference on Problems in Mathematics', in S. Feferman et. al. (eds), Kurt Gödel Collected Works, Volume II, Oxford University Press, New York, pp. 150–153.Google Scholar
  15. Gödel, K.: 1947, 'What is Cantor's Continuum Problem?', American Mathematical Monthly 54, 515–525, reprinted in S. Feferman et. al. (eds), Kurt Gödel Collected Works, Volume II, Oxford University Press, New York, pp. 176–187.Google Scholar
  16. Gödel, K.: 1951, 'Some Basic Theorems on the Foundations of Mathematics and their Implications', Josiah Willard Gibbs Lecture, American Mathematical Society, 1951, reprinted in S. Feferman et. al. (eds), Kurt Gödel Collected Works, Volume III, Oxford University Press, New York, pp. 304–323.Google Scholar
  17. Gödel, K.: 1995, 'Is Mathematics Syntax of Language?', in S. Feferman et al. (eds), Kurt Gödel Collected Works, Volume III, Oxford University Press, New York, pp. 356–362.Google Scholar
  18. Gödel, K.: 1995, 'The Modern Development of the Foundations of Mathematics in the Light of Philosophy', transcription of shorthand draft, with translation by Eckehart Köhler and Hao Wang, revised by J. Dawson, C. Parsons, and William Craig, in S.Google Scholar
  19. Feferman et al. (eds), Kurt Gödel Collected Works, Volume III, Oxford University Press, New York, pp. 374–377.Google Scholar
  20. Gödel, K.: What is Cantor's Continuum Problem?, revised and expanded version of Gödel, 1947, in Benacerraf and Putnam, 1983, 258–273, reprinted in S. Feferman et. al. (eds), 1990, Kurt Gödel Collected Works, Volume II, Oxford University Press, New York, pp. 254–270.Google Scholar
  21. Goodman, N.: 1995, Fact, Fiction and Forecast, Harvard University Press, Cambridge.Google Scholar
  22. Hauser, K.: 2000, Is Cantor's Continuum Problem Inherently Vague?.Google Scholar
  23. Hauser, K.: 1998, 'Sets of Reals Infinite Games and Core Model Theory', in C. T. Chong et al. (eds), Proceedings of the Sixth Asian Logic Conference, Beijing 1996, World Scientific, Singapore, New Jersey, London, Hong Kong, pp. 107–120.Google Scholar
  24. Hauser, K.: 1999, 'Reflections on the Last Delfino Problem', in S. R. Buss et al. (eds), Logic Colloquium '98, Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic, Prague 1998, Lecture Notes in Logic 13, Association for Symbolic Logic, pp. 206–225.Google Scholar
  25. Hauser, K.: forthcoming, Gödel's Program, Phenomenology and Higher Set Theory.Google Scholar
  26. Hempel, C. G.: 1965, 'Studies in the Logic of Confirmation', Mind 1, 1–26 and 97–121 (1945), reprinted in Aspects of Scientific Explanation and other Essays in the Philosophy of Science, The Free Press, New York, London: Collier-Macmillan, London.Google Scholar
  27. Hilbert, D.: 1900, 'Mathematische Probleme', Göttinger Nachrichten 253–257.Google Scholar
  28. Husserl, E.: 1900, Logische Untersuchungen, Erster Teil. Prolegomena zur reinen Logik, 1. Aufl., Niemeyer, Halle.Google Scholar
  29. Husserl, E.: 1901, Logische Untersuchungen, Zweiter Band. Untersuchungen zur Phänomenologie und Theorie der Erkenntnis, I. Teil, 1. Aufl., Niemeyer, Halle.Google Scholar
  30. Husserl, E.: 1928, Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie, Erstes Buch, Niemeyer, Halle.Google Scholar
  31. Husserl, E.: 1969, 'Formale und transzendentale Logik', Husserliana XVII, Nijhoff, The Hague (1974). English translation by D. Cairns, Martinus Nijhoff, The Hague (1969).Google Scholar
  32. Husserl, E.: 1954, 'Die Krisis der europäischen Wissenschaften und die transzendentale Phänomenologie', Husserliana VI, Nijhoff, The Hague.Google Scholar
  33. Jech, T.: 1980, Set Theory, Academic Press.Google Scholar
  34. Jech, T.: 1995, 'Singular Cardinals and the PCF Theory', Bull. Symb. Logic 1, 408–424.Google Scholar
  35. Jensen, R. B.: 1995, 'Inner Models and Large Cardinals', Bull. Symb. Logic 1, 393–407.Google Scholar
  36. Kanamori, A.: 1994, The Higher Infinite, Springer-Verlag, Heidelberg, pp. 536.Google Scholar
  37. Kanamori, A. and M. Magidor: 1978, 'The Evolution of Large Cardinal Axioms in Set Theory', in G. H. Müller and D. S. Scott (eds), Higher Set Theory, Lecture Notes in Mathematics 699, 99–275, Springer-Verlag, Berlin.Google Scholar
  38. Kechris, A. S.: 1984, 'The Axiom of Determinacy Implies Dependent Choices in L(R)', J. Symb. Logic 49, 161–173.Google Scholar
  39. Kunen, K.: 1980, Set Theory, North Holland, Amsterdam.Google Scholar
  40. Lakatos, I.: 1978, in J. Worrall and G. Currie (eds), Philosophical Papers, Cambridge University Press, Cambridge.Google Scholar
  41. Levy, A.: 1980, Basic Set Theory, Springer Verlag, Heidelberg.Google Scholar
  42. Levy, A. and R. M. Solvay: 1967, 'Measurable Cardinals and the Continuum Hypothesis', Isr. J. Math. 5, 234–248.Google Scholar
  43. Maddy, P.: 1988, 'Believing the Axioms I', J. Symb. Logic 53481–511.Google Scholar
  44. Maddy, P.: 1988, 'Believing the Axioms II', J. Symb. Logic 53, 736–764.Google Scholar
  45. Maddy, P.: 1993, 'Does V Equal L?', J. Symb. Logic 58, 15–41.Google Scholar
  46. Martin, D. A.: 1998, 'Mathematical Evidence', in H. G. Dales and G. Olivieri (eds), Truth in Mathematics, Clarendon Press, Oxford, pp. 215–231.Google Scholar
  47. Martin, D. A. and J. R. Steel: 1983, 'The Extent of Scales in L(R), in Cabal Seminar 7981, Lecture Notes in Math. 1019, 86–96, Springer Verlag, Berlin.Google Scholar
  48. Martin, D. A. and J. R. Steel: 1989, 'A Proof of Projective Determinacy', J. Am.Math. Soc. 2, 71–125.Google Scholar
  49. Martin, E. and D. Osherson: 1998, Elements of Scientific Inquiry, MIT Press, Cambridge, MA.Google Scholar
  50. McAloon, K.: 1971, 'Consistency Results about Ordinal Definability', Annals of Math. Logic 2, 449–467.Google Scholar
  51. Moschovakis, Y.: 1980, Descriptive Set Theory, North-Holland, Amsterdam.Google Scholar
  52. Moore, G. H.: 1982, Zermelo's Axiom of Choice, Springer-Verlag, Berlin.Google Scholar
  53. Parsons, Ch.: 1983, What is the Iterative Conception of Set, in Benacerraf and Putnam, pp. 503–529.Google Scholar
  54. Parsons, Ch.: 1995, 'Platonism and Mathematical Intuition in Kurt Gödels Thought', Bull. Symb. Logic 1, 44–74.Google Scholar
  55. Parsons, Ch.: 'Reason and Intuition', to appear in Synthese.Google Scholar
  56. Popper, K.: 1959, The Logic of Scientific Discovery, Hutchinson, London.Google Scholar
  57. Quine, W. V.: 1936, 'Truth by Convention', in Otis H. Lee (ed.), Philosophical Essays for A. N. Whitehead, Longmans, Green & Company, Inc., New York. Reproduced in Benacerraf and Putnam, 1983, pp. 329–354.Google Scholar
  58. Quine, W. V.: 1953, From a Logical Point of View, Harvard University Press, Cambridge, MA.Google Scholar
  59. Rawls, J.: 1971, A Theory of Justice, Harvard University Press, Cambridge, MA.Google Scholar
  60. Rawls, J.: 1993, Political Liberalism, Columbia University Press, New York.Google Scholar
  61. Reinhardt, W. N.: 1974, 'Remarks on Reflection Principles, Large Cardinals and Elementary Embeddings', in T. J. Jech (ed.), Axiomatic Set Theory Proc. of Symposia in Pure Mathematics, vol. 13, part II, American Mathematical Society, Providence, Rhode Island, pp. 189–205.Google Scholar
  62. Rota, C.: 1997, 'The Pernicious Influence of Mathematics on Philosophy', in Indiscrete Thoughts, Birkhäuser, Boston.Google Scholar
  63. Russell, B.: 1906, 'Les Paradoxes de la Logique', Revue de Métaphysique et de Morale 14, 627–650.Google Scholar
  64. Russell, B.: 1973, 'On 'Insolubilia’ and their Solution by Symbolic Logic', in D. Lacky (ed.), Essays in Analysis, Allen and Unwin, London, pp. 190–214, (English translation of Russell, 1906).Google Scholar
  65. Shelah, S.: 'Can you Take Solovay's Inaccessible Away?', Isr. J. Math. 48, 1–47.Google Scholar
  66. Shelah, S.: 1994, Cardinal Arithmetic, Oxford Logic Guides, Oxford University Press.Google Scholar
  67. Solovay, R. M.: 1970, 'A Model of Set Theory in Which Every Set of Reals is Lebesgue Measurable', Ann. of Math., ser. 2, 92, 1–56.Google Scholar
  68. Solovay, R. M., W. Reinhard, and A. Kanamori: 1978, 'Strong Axioms of Infinity and Elementary Embeddings', Ann. Math. Logic 13, 73–116.Google Scholar
  69. Steel, J. R.: 1996, 'The Core Model Iterability Problem', Lecture Notes in Logic 8, Springer Verlag.Google Scholar
  70. Tarski, A.: 1936, 'Der Wahrheitsbegriff in den formalisierten Sprachen', Studia Philosophica 1, 261–405. German translation by L. Blaustein of Projecie prawdy w jezykach nauk dedukcyjnych, Prace Towarzystwa Naukowego Waszawskiego, wydzia? III, no. 34 (1933).Google Scholar
  71. Tarski, A.: 1952, 'The Semantic Conception of Truth', in L. Linsky (ed.), Semantics and the Philosophy of Language, The University of Illinois Press, Urbana, pp. 13–47.Google Scholar
  72. Todorcevic, S.: 1989, 'Partition Problems in Topology', Contemporary Mathematics 84, American Mathematical Society.Google Scholar
  73. Todorcevic, S.: 1996, 'A Classification of Transitive Relations on ?1', Proc. London Math. Soc. 73, 501–533.Google Scholar
  74. Wang, H.: 1983, The Concept of Set, in Benacerraf and Putnam, 530–570, also in Wang (1974).Google Scholar
  75. Wang, H.: 1974, From Mathematics to Philosophy, Routledge and Kegan Paul, London.Google Scholar
  76. Wang, H.: 1987, Reflections on Kurt Gödel, MIT Press, Cambridge, MA.Google Scholar
  77. Wang, H.: 1996, A Logical Journey, MIT Press, Cambridge, MA.Google Scholar
  78. Woodin, W. Hugh: 1988, 'Supercompact Cardinals, Sets of Reals and, Weakly Homogeneous Trees', Proc. Natl. Acad. Sci. U.S.A. 85, 6587–6591.Google Scholar
  79. Woodin, W. Hugh: 1998, 'The Tower of Hanoi', in H. G. Dales and G. Oliveri (eds), Mathematical Truth, Oxford University Press, pp. 329–351.Google Scholar
  80. Woodin, W. Hugh: (1999), The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, Berlin, de Gruyter, New York.Google Scholar
  81. Woodin, W. H., A. R. D. Mathias, and K. Hauser, The Axiom of Determinacy, monograph in preparation.Google Scholar
  82. Zermelo, E.: 1908, 'Untersuchungen über die Grundlagen der Mengenlehre, I', Mathematische Annalen 65, 261–281, Engl. translation in J. van Heijenoort (ed.), From Frege to Gödel. A Source Book in Mathematical Logic, 18791931, Harvard University Press, Cambridge, MA, pp. 183–198.Google Scholar
  83. Zermelo, E.: 1930, 'Ñber Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre', Fundamenta Mathematica 16, 29–47.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Kai Hauser

There are no affiliations available

Personalised recommendations