Pharmaceutical Research

, Volume 15, Issue 9, pp 1364–1369 | Cite as

Liposomes Dispersed Within a Thermosensitive Gel: A New Dosage Form for Ocular Delivery of Oligonucleotides

  • Amélie Bochot
  • Elias Fattal
  • Annette Gulik
  • Guy Couarraze
  • Patrick Couvreur


Purpose. The main goal of this study was to develop an ocular controlled release formulation of a model oligonucleotide (pdT16), contained within liposomes dispersed within a thermosensitive gel composed by poloxamer 407.

Methods. The influence of the poloxamer concentration 2% or 27% on the stability of the liposomes (PC: CHOL and PC: CHOL: PEG-DSPE) was investigated. The in vitro release profiles of pdT16 from various poloxamer formulations (free pdT16 dispersed within 20% and 27% poloxamer gels, pdT16 encapsulated within liposomes dispersed within 20% and 27% poloxamer gels) were realized using a membrane-free release model.

Results. The dispersion of liposomes within a dilute 2% poloxamer solution resulted in a great leakage of pdT16 from liposomes. However, the destabilization effect of poloxamer was reduced when higher concentration (27%) was used. Poloxamer dissolution was found to control the release process of pdT16, whereas the dispersion of liposomes within 27% poloxamer gel was shown to slow down the diffusion of pdT16 out from the gel.

Conclusions. The dispersion of liposomes within a 27% poloxamer gel presented an interesting system to control the release of a model oligonucleotide compare to a simple gel.

drug delivery system gel dissolution liposomes oligonucleotide poloxamer 407 gels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Hélène and J. J. Toulmé. Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochim. Biophys. Acta. 1049:99–125 (1990).PubMedGoogle Scholar
  2. 2.
    R. M. Crooke, G. D. Hoke, and J. E. E. Shoemaker. In vitro toxicological evaluation of ISIS 1082, a phosphorothioate oligonucleotide inhibitor of herpes simplex virus. Antimicrobiob. Agents. Chemother. 36:527–32 (1992).Google Scholar
  3. 3.
    R. F. Azad, V. B. Driver, K. Tanaka, R. M. Crooke, and K. P. Anderson. Antiviralactivity of a phosphorothioate oligonucleotide complementary to RNA of the human cytomegalovirus major immediate-early region. Antimicrob. Agents. Chemother. 37:1945–1954 (1993).PubMedGoogle Scholar
  4. 4.
    P. S. Eder, R. J. Devine, J. M. Dagle, and J. A. Walder. Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3′ exonucleases in plasma. Antisense Res. Dev. 1:141–151 (1991).PubMedGoogle Scholar
  5. 5.
    C. Ropert, C. Malvy, and P. Couvreur. Inhibition of the friend retrovirus by antisense oligonucleotides encapsulated in liposomes: Mechanism of action. Pharm. Res. 10:1427–1433 (1993).PubMedGoogle Scholar
  6. 6.
    U. Pleyer, S. Lutz, W. Jusko, K. Nguyen, M. Narawane, D. Rückert, B. J. Mondino, and V. H. Lee. Ocular absorption of topically applied FK506 from liposomal and oil formulations in rabbit eye. Invest. Ophthalmol. Vis. Sci. 34:2737–2742 (1993).PubMedGoogle Scholar
  7. 7.
    C. Tremblay, M. Barza, F. Szoka, M. Lahav, and J. Baum. Reduced toxicity of liposome-associated amphotericin B injected intravitreally in rabbits. Invest. Ophthalmol. Vis. Sci. 26:711–718 (1985).PubMedGoogle Scholar
  8. 8.
    T. A. Mc Calden and M. Levy. Retention of topical liposomal formulations on the cornea. Experientia. 46:713–715 (1990).PubMedGoogle Scholar
  9. 9.
    V. H. L. Lee and J. R. Robinson. Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits. J. Pharm. Sci. 68:673–784 (1979).PubMedGoogle Scholar
  10. 10.
    D. A. Japs. Treatment of cytomegalovirus retinitis in patients with aids. Ann. Intern. Med. 125:144–145 (1996).PubMedGoogle Scholar
  11. 11.
    I. R. Schmolka. A review of block polymer surfactants. J. Am. Oil Chemists' Soc. 54:110 (1977).Google Scholar
  12. 12.
    B. Baleux. Dosage colorimétrique d'agents de surface non ioniques polyoxyéthylènes à l'aide d'une solution iodo-iodurée. Cr. Acad. Sc. Paris. 274:1617–1620 (1972).Google Scholar
  13. 13.
    M. Jamshaid, S. J. Farr, P. Kearney, and I. W. Kellaway. Poloxamer sorption on liposomes: comparison with polystyrene latex and influence on solute efflux. Int. J. Pharm. 48:125–131 (1988).Google Scholar
  14. 14.
    M. C. Woodle, M. S. Newman, and F. J. Martin. Liposome leakage and blood circulation: comparison of adsorbed block copolymers with covalent attachment of PEG. Int. J. Pharm. 88:327–334 (1992).Google Scholar
  15. 15.
    V. P. Torchilin, V. G. Omelyanenko, M. I. Papisov, A. A. Bogdanov, V. S. Trubetskoy, J. N. Herron, and C. A. Gentry. Poly (ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim. Biophys. Acta. 1195:11–20 (1994).PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Amélie Bochot
    • 1
  • Elias Fattal
    • 1
  • Annette Gulik
    • 2
  • Guy Couarraze
    • 1
  • Patrick Couvreur
    • 1
  1. 1.Laboratoire de Physico-Chimie, Pharmacotechnie, Biopharmacie, URA CNRS 1218, Faculté de PharmacieChâtenay-Malabry CedexFrance
  2. 2.Centre de Génétique MoléculaireFrance

Personalised recommendations