Advertisement

Space Science Reviews

, Volume 96, Issue 1–4, pp 55–86 | Cite as

Cratering Records in the Inner Solar System in Relation to the Lunar Reference System

  • G. Neukum
  • B.A. Ivanov
  • W.K. Hartmann
Article

Abstract

The well investigated size-frequency distributions (SFD) for lunar craters is used to estimate the SFD for projectiles which formed craters on terrestrial planets and on asteroids. The result shows the relative stability of these distributions during the past 4 Gyr. The derived projectile size-frequency distribution is found to be very close to the size-frequency distribution of Main-Belt asteroids as compared with the recent Spacewatch asteroid data and astronomical observations (Palomar-Leiden survey, IRAS data) as well as data from close-up imagery by space missions. It means that asteroids (or, more generally, collisionally evolved bodies) are the main component of the impactor family. Lunar crater chronology models of the authors published elsewhere are reviewed and refined by making use of refinements in the interpretation of radiometric ages and the improved lunar SFD. In this way, a unified cratering chronology model is established which can be used as a safe basis for modeling the impact chronology of other terrestrial planets, especially Mars.

Keywords

Solar System Reference System Relative Stability Space Mission Terrestrial Planet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arvidson, R., et al.:1978, 'Standard Techniques for Presentation and Analysis of Crater Sizefrequency Data', Icarus 37, 467-474.Google Scholar
  2. Asphaug, E., Moore, J.M., Morrison, D., Benz, W., Nolan, M.C., and Sullivan, R.J.:1996, 'Mechanical and Geological Effects of Impact Cratering on Ida', Icarus 120, 158-184.Google Scholar
  3. Baldwin, R.B.:1971, 'On the History of Lunar Impact Cratering: The Absolute Time Scale and the Origin of Planetesimals', Icarus 14, 36-52.Google Scholar
  4. Belton, M.J.S. et al.:1992, 'Galileo Encounter with 951 Gaspra-First Pictures of an Asteroid', Science 257, 1647-1652.Google Scholar
  5. Belton, M.J.S. et al.:1994, 'First Images of Asteroid 243 Ida', Science 265, 1543.Google Scholar
  6. Brown, H.:1960, 'The Density and Mass Distribution of Meteoritic Bodies in the Neighborhood of the Earth's Orbit', J. Geophys. Res. 65, 1679-1683.Google Scholar
  7. Campo Bagatin, A., Cellino A., Davis, D.R., Farinella, P., and Paolicchi, P.:1994a, 'Wavy Size Distribution for Collisional Systems with a Small-size Cutoff', Planet. Space Sci. 42, 1049-1092.Google Scholar
  8. Campo Bagatin, A., Farinella, P., and Petit, J.-M.:1994b, 'Fragment Ejection Velocities and the Collisional Evolution of Asteroids', Planet. Space Sci. 42, 1099-1107.Google Scholar
  9. Cellino, A., Zappalà, V., and Farinella, P.:1991, 'The Asteroid Size Distribution from IRAS Data', Mon. Not. R. Astr. Soc. 253, 561-574.Google Scholar
  10. Chapman, C., et al.:1996a, 'Cratering on Ida', Icarus 120, 77-86.Google Scholar
  11. Chapman, C.R., Veverka. J., Belton, M., Neukum, G. and Morrison, D.:1996b, 'Cratering on Gaspra', Icarus 120, 231-245.Google Scholar
  12. Croft, S.K.:1985, 'The Scaling of Complex Craters', J. Geophys. Res. 90, 828-842.Google Scholar
  13. Davis, D.R., Chapman, C.R., Weidenschilling, S.J., and Greenberg, R.:1985, 'Collisional History of Asteroids:Evidence from Vesta and the Hirayama Families', Icarus 62, 30-35.Google Scholar
  14. Davis, D., Weidenshilling, S.J., Farinella, P., Paolicchi, P. and Binzel, R.P.:1989, 'Asteroid Collisional History:Ef fects on Sizes and Spins', in R. Binzel, T. Gehrels, and M.S. Matthews (eds.), Asteroids II, Univ. Arizona Press, Tucson, pp. 805-826.Google Scholar
  15. Davis, D.R., Ryan, E.V., and Farinella, P.:1994, 'Asteroid Collisional Evolution: Results from Current Scaling Algorithm', Planet. Space. Sci. 43, 599-610.Google Scholar
  16. Dohnanyi, J.W.:1969, 'Collisional Model of Asteroids and their Debris', J. Geophys. Res. 74, 2531-2554.Google Scholar
  17. Durda, D., Greenberg, R., and Jedicke, R.:1998, 'Collisional Models and Scaling Laws:A new Interpretation of the Shape of the Main-belt Asteroid Distribution', Icarus 135, 431-440.Google Scholar
  18. Gaudin, A.:1944, Principles of Mineral Dressing, McGraw-Hill Book Co., Inc., New York.Google Scholar
  19. Gil-Hutton, R., and Brunini, A.:1999, 'Collisional Evolution of the Early Asteroid Belt', Planet. Space Sci. 47, 331-338.Google Scholar
  20. Gradie, J.C., Chapman, C.R., and Tedesco, E.W.:1989, 'Distribution of Taxonomic Classes and the Compositional Structure of the Asteroid Belt', in R. Binzel et al. (eds.), Asteroids II, Univ. Arizona Press, Tucson, pp. 316-335.Google Scholar
  21. Grieve, R.A.F., and Shoemaker E.M.:1994, 'The Record of the Past Impacts on Earth', in T. Gehrels (ed.), Hazards due to Comets and Asteroids, Univ. Arizona Press, Tucson, pp. 417-462.Google Scholar
  22. Hartmann, W.K.:1964, 'On the Distribution of Lunar Crater Diameters', Comm. Lunar Planet. Lab. 2, 197-203.Google Scholar
  23. Hartmann, W.K.:1965, 'Terrestrial and Lunar Flux of Meteorites in the Last two Billion Years', Icarus 4, 157-165.Google Scholar
  24. Hartmann, W.K.:1966, 'Martian Cratering', Icarus 5, 565-576.Google Scholar
  25. Hartmann, W.K.:1969, 'Terrestrial, Lunar, and Interplanetary Rock Fragmentation', Icarus 10, 201.Google Scholar
  26. Hartmann, W.K.:1970, 'Lunar Cratering Chronology', Icarus 13, 299-301.Google Scholar
  27. Hartmann, W.K.:1971, 'Martian Cratering 3:Theory of Crater Obliteration', Icarus, 15, 410-428.Google Scholar
  28. Hartmann, W.K.:1977, 'Relative Crater Production Rates on Planets', Icarus 31, 260-276.Google Scholar
  29. Hartmann, W.K.:1984, 'Does Crater “Saturation Equilibrium” Occur in the Solar System?', Icarus 60, 56-74.Google Scholar
  30. Hartmann, W.K.:1995, 'Planetary Cratering I: Lunar Highlands and Tests of Hypotheses on Crater Populations', Meteoritics 30, 451-467.Google Scholar
  31. Hartmann, W.K.:1999, 'Martian Cratering VI: Crater Count Isochrons and Evidence for Recent Volcanism from Mars Global Surveyor', Met. Planet. Sci. 34, 167-177.Google Scholar
  32. Hartmann, W.K., and Neukum, G.:2001, 'Cratering Chronology and the Evolution of Mars', Space Sci. Rev., this volume.Google Scholar
  33. Hartmann, W.K., et al.:1981, 'Chronology of Planetary Volcanism by Comparative Studies of Planetary Craters', Basaltic Volcanism on the Terrestrial Planets, Pergamon Press, Elmsford, NY, pp. 1050-1127.Google Scholar
  34. Hartmann, W.K., Berman, D., Esquerdo, G.A., and McEwen, A.:1999a, 'Recent Martian Volcanism: New Evidence from Mars Global Surveyor' Proc. 30th Lunar Planet. Sci. Conf., abstract #1270 (CD-ROM).Google Scholar
  35. Hartmann, W.K., Malin, M.M., McEwen, A., Carr, M., Soderblom, L., Thomas, P., Danielson, E., James, P. and Veverka, J.:1999b, 'Evidence for Recent Volcanism on Mars from Crater Counts', Nature 397, 586-589.Google Scholar
  36. Hartmann, W.K., Ryder, G., Dones, L., and Grinspoon, D:2001, 'The Time-dependent Intense Bombardment of the Primordial Earth/moon System', in R. Canup and K. Righter (eds.), Origin of the Earth and Moon, Univ. Arizona Press, in press.Google Scholar
  37. Hawkins, G.S.:1960, 'Asteroid Fragments', Astronom. J. 65, 318-322.Google Scholar
  38. Hughes, D.W.:2000, 'A new Approach to the Calculation of the Cratering Rate of the Earth over the Last 125 ±20 Myr', Mon. Not. Roy. Astron. Soc. 317, 429-437.Google Scholar
  39. Ivanov, B.A.:2001, 'Mars/Moon Cratering Rate Ratio Estimates, Space Sci. Rev., this volume.Google Scholar
  40. Ivanov, B.A., Basilevsky, A.T., and Neukum, G.:1997, 'Atmospheric Entry of Large Meteoroids: Implication to Titan', Planet. Space Sci. 45, 993-1007.Google Scholar
  41. Ivanov, B.A., Neukum, G., and Wagner, R.:1999, 'Impact Craters, NEA, and Main Belt Asteroids: Size-frequency Distribution', Proc. 30th Lunar Planet. Sci. Conf., abstract # 1583 (CD-ROM).Google Scholar
  42. Ivanov, B.A., Neukum, G., and Wagner, R.:2000, 'Size-Frequency Distributions of Planetary Impact Craters and Asteroids', in H. Rickman, and M. Marov (eds.), Collisional Processes in the Solar System, ASSL, Kluwer Academic Publishers, Dordrecht, in press.Google Scholar
  43. Jedicke, R., and Metcalfe, T.S.:1998, 'The Orbital Absolute Magnitude Distributions of Main Belt Asteroids', Icarus 131, 245-260.Google Scholar
  44. König, B.:1977, 'Investigations of Primary and Secondary Impact Structure on the Moon and Laboratory Experiments to Study the Ejecta of Secondary Particles', Ph.D. Thesis, Ruprecht Karl Univ., Heidelberg, 88 pp.Google Scholar
  45. König, B., Neukum, G., and Fechtig, H.:1977, 'Recent Lunar Cratering: Absolute Ages of Kepler, Aristarchus, Tycho', Proc. 8th Lunar Planet. Sci. Conf., 555-557 (abstract).Google Scholar
  46. Love, S., and Ahrens, T.J.:1996, 'Catastrophic Impacts on Gravity Dominated Asteroids', Icarus 124, 141-155.Google Scholar
  47. McEwen, A.S., Gaddis, L.R., Neukum, G., Hoffman, H., Pieters, C.M., and Head, J.W.:1993, 'Galileo Observations of Post-Imbrium Lunar Craters During the First Earth-Moon Flyby', J. Geophys. Res. 98, 17,207-17,231.Google Scholar
  48. McEwen, A.S., Moore, J.M., and Shoemaker, E.M.:1997, 'The Phanerozoic Impact Cratering Rate: Evidence from the Farside of the Moon', J. Geophys. Res. 102, 9231-9242.Google Scholar
  49. Melosh, H.J., and Ryan, E.V.:1997, 'Note:Asteroids Shattered but not Dispersed', Icarus 129, 562-564.Google Scholar
  50. Milani, A., Carpino, M., Hahn, G., and Nobili, A.M.:1989, 'Dynamics of Planet-crossing Asteroids: Classes of Orbital Behavior', Icarus 78, 212-269.Google Scholar
  51. Moore, J.M., and McEwen, A.S.:1996, 'The Abundance of Large, Copernican-age Craters on the Moon', Proc. 27th Lunar Planet. Sci., 899-900.Google Scholar
  52. Nemtchinov, I.V., Svetsov, V.V., Kosarev, I.B., Golub, A.P., Popova, O.P., Shuvalov, V.V., Spalding, R.E., Jacobs, C., and Tagliaferri, E.:1997, 'Assessement of Kinetic Energy of Meteoroids Detected by Satellite-based Light Sensors', Icarus 130, 259-274.Google Scholar
  53. Neukum, G.:1977, 'Different Ages of Lunar Light Plains', The Moon 17, 383-393.Google Scholar
  54. Neukum, G.:1983, Meteoritenbombardement and Datierung Planetarer Oberflächen, Habilitation Dissertation for Faculty Membership, Univ. of Munich, 186 pp.Google Scholar
  55. Neukum, G., and Hiller, K.:1981, 'Martian Ages', J. Geophys. Res. 86, 3097-3121.Google Scholar
  56. Neukum, G., and Ivanov, B.A.:1994, 'Crater Size Distribution and Impact Probabilities on Earth from Lunar, Terrestrial-planet, and Asteroid Cratering Data', in T. Gehrels (ed.), Hazards due to Comets and Asteroids, Univ. Arizona Press, Tucson, pp. 359-416.Google Scholar
  57. Neukum, G., König, B., and Arkani-Hamed, J.:1975, 'A Study of Lunar Impact Crater Size Distributions', The Moon 12, 201-229.Google Scholar
  58. Öpik, E.J.:1966, 'The Martian Surface', Science 153, 255.Google Scholar
  59. Rabinowitz, D.L.:1993, 'The Size-distribution of the Earth-approaching Asteroids', Astrophys. J. 407, 412-427.Google Scholar
  60. Rabinowitz, D.L.:1997, 'Are Main-belt Asteroids a Sufficient Source for the Earth-approaching Asteroids? Part II. Predicted vs. Observed Size Distribution', Icarus 130, 287-295.Google Scholar
  61. Rabinowitz, D.L., Bowell, E., Shoemaker, E. and Muinonen, K.:1994, 'The population of Earthcrossing asteroids', in T. Gehrels (ed.), Hazards due to Comets and Asteroids, Univ. Arizona Press, Tucson, pp. 285-312.Google Scholar
  62. Rabinowitz, D.L., Helin, E., Lawrence, K., and Pravdo, S.:2000, 'A Reduced Estimate of the Number of Kilometer-sized Near-Earth Asteroids', Nature 403, 165-156Google Scholar
  63. Ronca, L.B., Basilevsky, A.T., Kryuchkov, V.P., and Ivanov, B.A.:1981, 'Lunar Craters Evolution and Meteoroidal Flux in Pre-mare and Post-mare Times', The Moon and the Planets 245, 209-229.Google Scholar
  64. Ruzmaikina, T.V., Safronov, V.S., and Weidenschilling, S.J.:1989, 'Radial Mixing of Material in the Asteroidal Zone', in R. Binzel, T. Gehrels, and M.S. Matthews (eds.), Asteroids II, Univ. Arizona Press, Tucson, PP. 681-700.Google Scholar
  65. Safronov, V.S.:1972, 'Ejection of Bodies from the Solar System in the Course of the Accumulation of the Giant Planets and the Formation of the Cometary Cloud', in G.A., Chebotarev, E.I. Kazimirchak-Polonskaia, and B.G. Marsden (eds.), The Motion, Evolution of Orbits, and Origin of Comets, Proc. IAU Symp. 45, Leningrad, Reidel, Dordrecht, p. 329.Google Scholar
  66. Schmidt, R.M., and Housen, K.R.:1987, 'Some Recent Advances in the Scaling of Impact and Explosion Cratering', Int. J. Impact Engng. 5, 543-560.Google Scholar
  67. Shoemaker, E.M.:1977, 'Astronomically Observable Crater-forming Projectiles', in D.J. Roddy, R.O. Pepin, and R.B. Merrill (eds.), Impact and Explosion Cratering, Pergamon Press, New York, pp. 639-656.Google Scholar
  68. Shoemaker, E.M., and Wolfe, R.:1982, 'Cratering Time Scales for the Galilean Satellites, in D. Morrison (ed.), Satellites of Jupiter, Univ. of Arizona Press, Tucson, pp. 277-339.Google Scholar
  69. Shoemaker, E.M., Batson, R.M., Bean, A.L. et al.:1970, 'Preliminary Geologic Investigation of the Apollo 12 Landing Site, Part A', Geology of the Apollo 12 Landing Site, Apollo 12 Prel. Sci. Rep., NASA SP-235.Google Scholar
  70. Stern, S.A., and Weissman, P.R.:2000, 'Collisional Processing of Proto-comets in the Primordial Solar Nebula', Proc. 31st Lunar Planet. Sci. Conf., 1830.Google Scholar
  71. Stöffler, D., and Ryder, G.:2001, 'Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System', Space Sci. Rev., this volume.Google Scholar
  72. Strom, R.:1977, 'Origin and Relative Age of Lunar and Mercurian Inter-crater Plains', Phys. Earth Planet. Interiors 15, 156-172.Google Scholar
  73. Strom, R.G., and Neukum, G.:1988, 'The Cratering Record on Mercury and the Origin of Impacting Objects', in F. Vilas, C.R. Chapman, and M.S. Matthews (eds.), Mercury, Univ. Arizona Press, Tucson, pp. 336-373.Google Scholar
  74. Strom, R.G., Woronow, A., and Gurnis, M.:1981, 'Crater Populations on Ganymede and Callisto', J. Geophys. Res. 86, 8659-8674Google Scholar
  75. van Houten, C.J., van Houten-Groeneveld, I., Herget, P. and Gehrels, T.:1970, 'The Palomar-Leiden Survey of Faint Minor Planets', Astron. Astrophys. Suppl. 2, 339-448.Google Scholar
  76. Veverka, J. et al.:1997, 'NEAR's Flyby of 253 Mathilde: Images of a C Asteroid', Science 278, 2109-2114.Google Scholar
  77. Veverka, J., et al.:2000, 'NEAR at Eros: Imaging and Spectral Results', Science 289, 2088-2097.Google Scholar
  78. Weidenschilling, S.J.:1994, 'Origin of Cometary Nuclei as “Rubble Piles”', Nature, 368, 721-723.Google Scholar
  79. Weissman, P.R.:1999, 'Diversity of Comets: Formation Zones and Dynamical Paths', Space Sci. Rev. 90, 301-311.Google Scholar
  80. Werner, S.C., Harris, A.W., Neukum, G., Ivanov, B.A., and Harris, A.W.:2000a, 'A Comparison of Lunar Crater Size Frequency Distribution and Near-Earth Asteroid Population Characteristics: Strong Evidence for the Stability of their Size Frequency Distribution', AAS Div. Planet. Sci. Meeting 32, p. 1409.Google Scholar
  81. Werner, S.C., Harris, A.W., Neukum, G., and Ivanov, B.A.:2000b, 'The Near-Earth Asteroid Size Frequency Distribution:A Snapshot of the Lunar Crater Size Frequency Distribution, Icarus, submitted.Google Scholar
  82. Wilhelms, D.E., McCauley, J.F., and Trask, N.J.:1987, 'The Geologic History of the Moon', U.S. Geol. Survey Prof. Paper 1348, Washington, U.S.G.P.O., and Denver, CO, U.S. Geol. Survey, 302 pp.Google Scholar
  83. Wetherill, G.W.:1989, 'Origin of the Asteroid Belt', in R. Binzel, T. Gehrels, and M.S. Matthews (eds.), Asteroids II, Univ. Arizona Press, Tucson, pp. 661-680.Google Scholar
  84. Young, J.:1940, 'A Statistical Investigation of Diameter and Distribution of Lunar Craters', J. Brit. Astron. Assoc. 50, 309-326.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • G. Neukum
    • 1
  • B.A. Ivanov
    • 2
  • W.K. Hartmann
    • 3
  1. 1.DLR Institute of Space Sensor Technology and Planetary ExplorationBerlinGermany
  2. 2.Institute for Dynamics of GeospheresRussian Academy of SciencesMoscowRussia
  3. 3.Planetary Science InstituteTucsonUSA

Personalised recommendations